[1] Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network![J]. Current Opinion in Plant Biology, 1998,1(5):428-433.
[2] Knight H, Knight M R. Abiotic stress signalling pathways: specificity and cross-talk[J]. Trends in Plant Science, 2001,6(6):262-267.
[3] Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and Calcineurin B-like Proteins Calcium Sensors for Specific Signal Response Coupling in Plants[J]. Plant Cell, 2002,14(suppl 1):S389-S400.
[4] Reddy A S. Calcium: silver bullet in signaling[J]. Plant Science, 2001,160(3):381-404.
[5] Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling[J]. Plant Cell, 2002,14(suppl 1):S401-S417.
[6] Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J]. New Phytologist, 2001,151(1):35-66.
[7] Sanders D, Brownlee C, Harper J F. Communicating with calcium[J]. Plant Cell, 1999,11(4):691-706.
[8] Sebastià C H, Hardin S C, Clouse S D, et al. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate[J]. Archives of Biochemistry and Biophysics, 2004,428(1):81-91.
[9] Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003,132(2):666-680.
[10] Kolukisaoglu ü, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004,134(1):43-58.
[11] McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003,159(3):585-598.
[12] Zielinski R E. Calmodulin and calmodulin-binding proteins in plants[J]. Annual Review of Plant Biology, 1998,49(1):697-725.
[13] Cheng S H, Willmann M R, Chen H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiology, 2002,129(2):469-485.
[14] Yang T, Poovaiah B. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science, 2003,8(10):505.
[15] Wernimont A K, Amani M, Qiu W, et al. Structures of parasitic CDPK domains point to a common mechanism of activation[J]. Proteins: Structure, Function, and Bioinformatics, 2011,79(3):803-820.
[16] Wernimont A K, Artz J D, Jr Finerty P, et al. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium[J]. Nature Structural & Molecular Biology, 2010,17(5):596-601.
[17] Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection[J]. Nature Reviews Molecular Cell Biology, 2005,6(7):555-566.
[18] Abbasi F, Onodera H, Toki S, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant Molecular Biology, 2004,55(4):541-552.
[19] Asano T, Hakata M, Nakamura H, et al. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice[J]. Plant Molecular Biology, 2011,75(1-2):179-191.
[20] Asano T, Wakayama M, Aoki N, et al. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions[J]. Plant Biotechnology, 2010,27(4):369-373.
[21] Ivashuta S, Liu J, Liu J, et al. RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development[J]. Plant Cell, 2005,17(11):2911-2921.
[22] Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2007,19(10):3019-3036.
[23] Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006,57(6):1341-1351.
[24] Ray S, Agarwal P, Arora R, et al. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice(Oryza sativa L. ssp. indica)[J]. Molecular Genetics and Genomics, 2007,278(5):493-505.
[25] Du J, Xie H L, Zhang D Q, et al. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach [J]. Proteomics, 2006, 6:881-895.
[26] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997,25(24):4876-4882.
[27] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011,28(10):2731-2739.
[28] Guo A-Y, Zhu Q-H, Chen X, et al. GSDS: a gene structure display server [J]. Yi Chuan, 2007,29(8):1023.
[29] Barrett T, Edgar R. Gene Expression Omnibus (GEO): Microarray data storage, submission, retrieval, and analysis [J]. Methods in Enzymology, 2006,411:352.
[30] Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science, 2006,313(5793):1596-1604.
[31] Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases[J]. Annual Review of Plant Biology, 2004,55:263-288.
[32] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996,274(5294):1900-1902.