[1] Kuhlbusch T A J, Crutzen P J. Black carbon, the global carbon cycle, and atmospheric carbon dioxide[J]. Biomass Burning and Global Change, 1996, 1: 160-169.
[2] Crutzen P J, Andreae M O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles[J]. Science, 1990, 250(4988): 1669-1678.
[3] Cao M, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393(6682): 249-252.
[4] Schmidt M W I, Noack A G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793.
[5] 张旭东,梁 超,诸葛玉平,等. 黑碳在土壤有机碳生物地球化学循环中的作用[J]. 土壤通报, 2003, 34(4): 349-355.
[6] Goldberg E D. Black Carbon in the Environment: Properties and Distribution[M]. John Wiley,New York, 1985.
[7] Haumaier L, Zech W. Black carbon—possible source of highly aromatic components of soil humic acids[J]. Organic Geochemistry, 1995, 23(3): 191-196.
[8] 杨 弘,裴铁璠,关德新,等.长白山阔叶红松林土壤水分动态研究[J]. 应用生态学报,2006,17(4):587-591.
[9] 于振良,王庆礼.长白山阔叶红松林带内杨桦林动态模拟[J]. 应用生态学报,1997,8(5):455-458.
[10] 汲常萍,王慧梅,王文杰,等.长白山阔叶红松林表层矿质土壤不同组分中有机碳及氮库特征研究[J]. 植物研究,2014,34(3): 372-379.
[11] 杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳, 氮贮量的比较[J]. 应用生态学报,2005,16(7): 1195-1199.
[12] 胡 嵩,张 颖,史荣久,等.长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报,2013, 24(2): 366-366.
[13] 齐 麟,于大炮,周旺明,等.采伐对长白山阔叶对红松林生态系统碳密度的影响[J]. 生态学报,2013,33(10):3065-3073.
[14] 吴志军,苏东凯,牛丽君,等.阔叶红松林森林资源可持续利用方案[J]. 生态学报,2015,35(1):24-30.
[15] 韩阳瑞. 透光抚育对长白山中期 "栽针保阔红松林碳收支的影响[J]. 生态学杂志, 2014,33(9):2296-2307.
[16] 李昌华. 长白山露水河施业区的土壤条件及其与林型分布和林木生长的关系[J]. 林业科学, 1963, 8(2):93-104.
[17] 徐摇媛. 长白山阔叶红松林土壤无机氮空间异质性[J]. 应用生态学报, 2010, 21(7): 1627-1634.
[18] Lim B, Cachier H. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chemical Geology, 1996, 131(1): 143-154.
[19] 李维福, 解宏图, 郑立臣. 土壤有机质分组方法研究进展[J]. 农业系统科学与综合研究, 2008, 24(3): 338-343.
[20] Greenland D J, Ford G W. Separation of partially humified organic materials from soils by ultrasonic dispersion[C]//8th International Congress of Soil Science, Bucharest. 1964, 2: 137-147.
[21] Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6): 1799-1806.
[22] Rumpel C, Alexis M, Chabbi A, et al. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture[J]. Geoderma, 2006, 130(1): 35-46.
[23] 于小玲, 佟小刚, 杨学云, 等. 长期施肥对 (土娄) 土黑碳积累的影响[J]. 植物营养与肥料学报, 2012, 18(6) : 1404-1411.
[24] 刘兆云, 章明奎. 林地土壤中黑碳的出现及分布特点[J]. 浙江林学院学报, 2009, 26(3): 341-345.
[25] Lynch J A, Clark J S, Stocks B J. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests[J]. Canadian Journal of Forest Research, 2004, 34(8): 1642-1656.
[26] Ussiri D A N, Johnson C E. Characterization of organic matter in a northern hardwood forest soil by 13 C NMR spectroscopy and chemical methods[J]. Geoderma, 2003, 111(1): 123-149.
[27] Hammes K, Torn M S, Lapenas A G, et al. Centennial black carbon turnover observed in a Russian steppe soil[J]. Biogeosciences, 2008, 5(5): 1339-1350.
[28] Brodowski S, Amelung W, Haumaier L, et al. Black carbon contribution to stable humus in German arable soils[J]. Geoderma, 2007, 139(1): 220-228.
[29] Leifeld J, Fenner S, Müller M. Mobility of black carbon in drained peatland soils[J]. Biogeosciences Discussions, 2007, 4(2): 871-891.
[30] Major J, Lehmann J, Rondon M, et al. Fate of soil-applied black carbon: downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4): 1366-1379.
[31] Dai X, Boutton T W, Glaser B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biology and Biochemistry, 2005, 37(10): 1879-1881.
[32] 黄从德, 张 健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3): 1217-1225.
[33] 商素云. 亚热带不同林分土壤有机碳组分及其结构特征研究[D]. 浙江农林大学, 2012.
[34] Spycher G, Sollins P, Rose S. Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns[J]. Soil Science, 1983, 135(2): 79-87.
[35] Kuhlbusch T A J, Andreae M O, Cachier H, et al. Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1996, 101(D19): 23651-23665.
[36] Schmidt M W I, Skjemstad J O, Gehrt E, et al. Charred organic carbon in German chernozemic soils[J]. European Journal of Soil Science, 1999, 50(2): 351-365.
[37] Glaser B, Balashov E, Haumaier L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000, 31(7): 669-678.
[38] Brodowski S, Amelung W, Haumaier L, et al. Black carbon contribution to stable humus in German arable soils[J]. Geoderma, 2007, 139(1): 220-228.
[39] Garten Jr C T, Post III W M, Hanson P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115-145.
[40] Cambardella C A, Elliott E T. Methods for physical separation and characterization of soil organic matter fractions[J]. Geoderma, 1993, 56(1): 449-457.