[1] 张翠萍, 孟 平, 张劲松, 等. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用[J]. 植物生态学报, 2014, 38 (5): 499-506.
[2] Aerts R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks[J]. Journal of Experimental Botany, 1999, 50(330): 29-37.
[3] Brooker R W, Maestre F T, Callaway R M, et al. Facilitation in plant communities: the past, the present, and the future[J]. Journal of Ecology, 2008, 96(1): 18-34.
[4] Sun S J, Meng P, Zhang J S. et al. Hydraulic lift by Juglans regia relates to nutrient status in the intercropped shallow-root crop plant[J]. Plant and Soil, 2014, 374(1-2): 629-641.
[5] Mugendi D, Nair P, Mugwe J, et al. Alley cropping of maize with Calliandra and Leucaena in the subhumid highlands of Kenya: Part 2. Soil-fertility changes and maize yield[J]. Agroforestry systems, 1999, 46(1): 39-50.
[6] Ghosh P, Bandyopadhyay K, Wanjari R, et al. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems-an Indian perspective: a review[J]. Journal of Sustainable Agriculture, 2007, 30(1): 59-86.
[7] Jeranyama P, Hesterman O B, Waddington S R, et al. Relay-intercropping of sunnhemp and cowpea into a smallholder maize system in Zimbabwe[J]. Agronomy Journal, 2000, 92(2): 239-244.
[8] Kwabiah A. Biological efficiency and economic benefits of pea-barley and pea-oat intercrops[J]. Journal of Sustainable Agriculture, 2005, 25(1): 117-128.
[9] Sarkar R, Sanyal S. Production potential and economic feasibility of sesame (Sesamum indicum)-based intercropping system with pulse and oilseed crops on rice fallow land[J]. Indian Journal of Agronomy, 2000, 45(3): 545-550.
[10] Toomsan B, Cadisch G, Srichantawong M, et al. Biological N2 fixation and residual N benefit of pre-rice leguminous crops and green manures[J]. NJAS-Wageningen Journal of Life Sciences, 2000, 48(1): 19-29.
[11] Boyer J S. Water transport[J]. Annual Review of Plant Physiology, 1985, 36(1): 473-516.
[12] Forde B, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232(1-2): 51-68.
[13] Lovelock C E, Ball M C. Feller I C, et al. Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability[J]. Physiologia Plantarum, 2006, 127(3): 457-464.
[14] Kang S Z, Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency[J]. Journal of Experimental Botany, 2004, 55(407): 2437-2446.
[15] Gorska A, Ye Q, Holbrook N M, et al. Nitrate control of root hydraulic properties in plants: translating local information to whole plant response[J]. Plant Physiol, 2008, 148(2): 1159-1167.
[16] Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress[J]. Journal of Experimental Botany, 2000, 51(342): 61-70.
[17] Friend A L, Eide M R, Hinckley T M. Nitrogen stress alters root proliferation in Douglas-fir seedlings[J]. Canadian Journal of Forest Research, 1990, 20(9): 1524-1529.
[18] 毛达如. 植物营养研究方法[M]. 北京: 北京农业大学出版社, 1999.
[19] 李郑军, 许修宏. 不同地区大豆根瘤菌培养条件的优化[J].东北林业大学学报, 2009, 40(11): 11-13.
[20] Steudle E, Peterson C A. How does water get through roots[J]. Journal of Experimental Botany, 1998, 49(322):775-788.
[21] 姚利民, 李伏生, 佟玲土, 等. 土壤水分有效性对梭梭苗根系导水率的动态影响[J]. 农业机械学报, 2011, 42(5): 68-72.
[22] Wan X C, Zwiazek J J. Mercuric chloride effects on root water transport in aspen seedlings[J]. Plant Physiol, 1999, 121(3): 939-946.
[23] 张翠萍, 孟 平, 李建中, 等. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38 (12): 1345-1355.
[24] Prioul J, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used[J]. Annals of Botany, 1977, 41(4): 789-800.
[25] Schipanski M, Drinkwater L, Russelle M. Understanding the variability in soybean nitrogen fixation across agroecosysterms[J]. Plant and soil, 2010, 329(1-2):379-397.
[26] Fustec J, Lesulfleur F, Mahieu S, et al. Nitrogen rhizodeposition of legumes[J]. A review. Agronomy for Sustainable Development, 2010, 30(1):57-66.
[27] 张虎天,郭丽琢,柴 强,等.接种根瘤菌对豌豆/玉米体系根际细菌数量及氮营养的影响[J].甘肃农业大学学报, 2011, 46 (1): 30-33.
[28] 郭丽琢,张虎天,何亚慧,等.根瘤菌接种对豌豆-玉米间作系统作物生长及氮素营养的影响[J].草业学报,2012,21(1):43-49.
[29] 姜琳琳, 韩立思, 韩晓日, 等. 氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J]. 植物营养与肥料学报, 2011,17(1):247-253.
[30] Caldwell M, Dudley L, Lilieholm B. Soil solution phosphate, root uptake kinetics and nutrient acquisition: implications for a patchy soil environment[J]. Oecologia, 1992, 89(3): 305-309.
[31] George E, Seith B, Schaeffer C, et al. Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil[J]. Tree Physiology, 1997, 17(1): 39-45.
[32] Steudle E. Water uptake by plant roots: an integration of views[J]. Plant and Soil, 2000, 226(1): 45-56.
[33] 慕自新, 张岁岐, 梁爱华, 等. 玉米整株根系水导与其表型抗旱性的关系[J]. 作物学报, 2005, 31(2): 203-208.
[34] 荀俊杰, 李俊英, 陈 建, 等. 幼龄柠条细根现存量与环境因子的关系[J]. 植物生态学报, 2009, 33(4):764-771.
[35] Zobel R W. Sensitivity analysis of computer based diameter measurement from digital images[J]. Crop Science, 2003 43(2):583-591.