[1] Soodan R K, Pakade Y B, Nagpal A, et al. Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review[J]. Talanta, 2014, 125: 405-410.
[2] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils; To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266:141-166.
[3] Sharma P, Dubey R S. Lead toxicity in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 35-52.
[4] 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1) : 287-296.
[5] Uzu G, Sobanska S, Aliouane Y, et al. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation[J]. Environmental Pollution, 2009, 157(4): 1178-1185.
[6] Punamiya P, Datta R, Sarkar D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass[Chrysopogon zizanioides (L.)][J]. Journal of Hazardous Materials, 2010, 177(1-3): 465-474.
[7] Wang H H, Shan X Q, Wen B, et al. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental and Experimental Botany, 2007, 61(3): 246-253.
[8] Wojas S, Ruszczyńska A, Bulska E, et al. Ca2+-dependent plant response to Pb2+ is regulated by LCT1[J]. Environmental Pollution, 2007, 147(3): 584-592.
[9] Sahi S V, Bryant N L, Sharma N C, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii[J]. Environmental Science & Technology, 2002, 36(21): 4676-4680.
[10] Tian S K, Lu L L, Yang X E, et al. Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation[J]. Environmental Science & Technology, 2010, 44(15): 5920-5926.
[11] Meyers D E R, Auchterlonie G J, Webb R I, et al. Uptake and localisation of lead in the root system of Brassica juncea[J]. Environmental Pollution, 2008, 153(2): 323-332.
[12] Kopittke P M, Asher C J, Kopittke R A, et al. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata)[J]. Environmental Pollution, 2007, 150(2): 280-287.
[13] Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc cadmium accumulation and growth simulation in Arabis paniculata Franch[J]. Environmental and Experimental Botany, 2009, 66(1): 126-134.
[14] Strycharz S, Newman L. Use of native plants for remediation of trichloroethylene: I. Deciduous trees[J]. International Journal of Phytoremediation, 2009, 11(2): 150-170.
[15] Baccioa D D, Castagna A, Tognetti R, et al. Early responses to cadmium of two poplar clones that differ in stress tolerance[J]. Journal of Plant Physiology, 2014, 171(18): 1693-1705.
[16] Evlard A, Sergeant K, Printz B, et al. A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones[J]. Journal of Proteomics, 2014, 101: 113-129.
[17] de Souza S C R, de Andrade S A L, de Souza L A, et al. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage[J]. Journal of Environmental Management, 2012, 110: 299-307.
[18] Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And whatmakes them so interesting?[J]. Plant Science, 2011, 180(2): 169-181.
[19] Bhargava A, Carmona F F, Bhargava M, et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management, 2012, 105: 103-120.
[20] Shu W S, Ye Z H, Zhang Z Q, et al. Natural colonization of plants on five lead/zinc mine tailings in southern China[J]. Restoration Ecology, 2005, 13(1): 49-60.
[21] Lowther J R. Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles[J]. Communications in Soil Science and Plant Analysis, 1980, 11(2): 175-188.
[22] Mukherjee S K, Asanuma S. Possible role of cellular phosphate pool and subsequent accumulation of inorganic phosphate on the aluminum tolerance in Bradyrhizobium japonicum[J]. Soil Biology & Biochemistry, 1998, 30(12): 1511-1156.
[23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 46-109
[24] Lichtenthaler F W, Cuny E, Weprek S. Eine einfache und leistungsfähige synthese acylierter glyculosylbromide aus hydroxyglycal-estern[J]. Angewandte Chemie, 1983, 95(11): 906-908
[25] Aravind P, Prasad M N V. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte[J]. Plant Physiology and Biochemistry, 2003, 41(4): 391-397.
[26] 乔冬梅. 基于黑麦草根系分泌有机酸的铅污染修复机理研究[D]. 北京: 中国农业科学院, 2010.
[27] Pérez-Esteban J, Escolástico C, Ruiz-Fernández J, et al. Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus[J]. Environmental and Experimental Botany, 2013, 88: 53-59.
[28] Pottier M, García de la Torre VS, Victor C, et al. Genotypic variations in the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation[J]. Environmental Pollution, 2015, 199: 72-83.
[29] Keller C, Hammer D, Kayser A, et al. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field[J]. Plant and Soil, 2003, 249(1): 67-81.
[30] 王树凤. 柳树对重金属铅、镉响应的基因型差异及其耐性机制研究[D]. 杭州: 浙江大学, 2015.
[31] Wang S F, Shi X, Sun H J, et al. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead[J]. PLoS One, 2014, 9(9): e108568
[32] Kumar A, Prasad M N V. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically[J]. Photosynthetica, 2015, 53 (1): 66-71.
[33] 胡筑兵, 陈亚华, 王桂萍, 等. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶[J]. 植物学通报, 2006, 23(2): 129-137.
[34] 万雪琴, 张 帆, 夏新莉, 等. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44(6): 73-78.