[1] Yang P, Chen X M, Liu W W, et al. Transcriptome analysis of sexually dimorphic Chinese white wax scale insects reveals key differences in developmental programs and transcription factor expression[J]. Sci Rep, 2015, 5:8141.
[2] Truman J W, Riddiford L M. The origins of insect metamorphosis[J]. Nature,1999, 401(6752):447-452.
[3] White K P, Rifkin S A, Hurban P, et al. Microarray analysis of Drosophila development during metamorphosis[J]. Science, 1999, 286(5447):2179-2184.
[4] Fu Q, Liu P C, Wang J X, et al. Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera[J]. BMC Genomics, 2009, 10:600.
[5] Man'e-Padr'os D, Cruz J, Vilaplana L, et al. The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect[J]. Dev Biol, 2010, 346(1):150-160.
[6] Gu J, Huang L X, Gong Y J, et al. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm[J]. Insect Biochem Mol Biol, 2013, 43(9):794-808.
[7] Soares M P, Barchuk A R, Simoes A C, et al. Genes involved in thoracic exoskeleton formation during the pupal-to-adult molt in a social insect model, Apis mellifera[J]. BMC Genomics, 2013, 14:576.
[8] Yang P, Zhu J Y, Gong Z J, et al. Transcriptome analysis of the Chinese white wax scale Ericerus pela with focus on genes involved in wax biosynthesis[J]. PLoS One, 2012, 7(4):e35719.
[9] Yu S H, Yang P, Sun T, et al. Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect[J] Insect Sci, 2016, 1:1-8.
[10] Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Res, 1997,25(17):3389-3402.
[11] Deng Y Y, Li J Q, Wu S F, et al. Integrated nr database in protein annotation system and its localization[J]. Computer Engineering, 2006, 32(5):71-74.
[12] Apweiler R, Bairoch A, Wu C H, et al. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Res, 2004, 32:115-119.
[13] Ashburner M, Ball C A, Blake J A, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet, 2000, 25(1):25-29.
[14] Tatusov R L, Galperin M Y, Natale D A, et al. The COG database:a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Res, 2000, 28(1):33-36.
[15] Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res, 2004, 32:277-280.
[16] Arimoto M, Yamagishi K, Wang J, et al. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene[J]. AMB Express, 2015, 5(1):81.
[17] Liu W W, Yang P, Chen X M, et al. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera:Coccidae)[J]. J Insect Sci, 2014, 14(142):1-9.
[18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.
[19] Angelini D R, Kaufman T C. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development[J]. Dev Biol, 2005, 283(2):409-423.
[20] Zhu J Y, Yang P, Zhang Z, et al. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani[J]. PLoS One, 2013, 8(1):e54411.
[21] Yang P, Chen X M. Protein profiles of Chinese white wax scale, Ericerus pela, at the male pupal stage by high-throughput proteomics[J]. Arch Insect Biochem Physiol, 2014, 87(4):214-233.
[22] Caplan A J, Jackson S, Smith D. Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine[J]. EMBO Rep, 2003, 4(2):126-130.
[23] Mahroof R, Zhu K Y, Neven L, et al. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera:Tenebrionidae)[J]. Mol Integr Physiol, 2005, 141(2):247-256.
[24] Tachibana S, Numata H, Goto S G. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapauses in the blow fly Lucilia sericata[J]. J Insect Physiol, 2005, 51(6):641-647.
[25] de Andrade A, Siviero F, Rezende-Teixeira P, et al. Molecular characterization of a putative heat shock protein cognate gene in Rhynchosciara Americana[J]. Chromosome Res, 2009, 17(7):935-945.
[26] Zhang Q R, Denlinger D L. Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm[J]. J Insect Physiol, 2010, 56(2):138-150.