[1] Ashmore M R. Assessing the future global impacts of ozone on vegetation[J]. Plant, Cell and Environment, 2005, 28:949-964.
[2] IPCC.CLIMATECHANGE 2001-The Scientific Basis[M]. Cambridge, UK and New York, USA:Cambridge University Press, 2002.
[3] 冯宗炜,王春乙,金明红,等.大气臭氧与环境变化对农业生态系统的影响机理与评估[M]//周秀骥等主编,长江三角洲低层大气与生态系统相互作用研究.北京:气象出版社,2004:253-292.
[4] 胡正华,孙银银,李琪,等.南京北郊春季地面臭氧与氮氧化物浓度特征[J].环境工程学报,2012,6(6):1995-2000.
[5] 徐胜,何兴元,陈玮,等.高浓度O3对树木生理生态的影响[J].生态学报,2009,29(1):368-377.
[6] 刘常富,刘辰,何兴元,等.基于OTC模拟的臭氧浓度升高对华山松生长的影响[J].应用生态学报,2013,24(10):2731-2736.
[7] 苏丽丽,付伟,徐盛,等.高浓度O3对银杏凋落叶化学组成的影响[J].生态学杂志,2015,34(10):2757-2763.
[8] 付伟,邓莉兰,徐胜,等.臭氧对黄檗幼苗叶片可见伤害及气孔特征的影响[J].东北林业大学学报,2015,43(2):14-18.
[9] 牛俊峰,张巍巍,李丽,等.臭氧浓度升高对香樟叶片光合色素及抗过氧化的影响及其氮素响应[J].生态学报,2012,32(16):5062-5070.
[10] Zhang W W, Niu J F, Wang X K, et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China[J]. Photosynthetica, 2011, 49(1):29-36.
[11] 张巍巍,牛俊锋,冯兆忠,等.全缘冬青幼苗(Ilex integra Thunb.)对大气O3浓度升高的响应[J].环境科学,2011,32(8):2414-2421.
[12] 杨田田,张巍巍,胡恩柱,等.O3浓度升高对南方城市绿化树种氮素的影响[J].环境科学,2014,35(10):3896-3902.
[13] Feng Z, Sun J, Wan W, Hu E, Calatayud V. Evidence of widespread ozone-induce visible injury on plants in Beijing, China[J]. Environmental Pollution, 2014, 193:296-301.
[14] Kolb T E, Matyssek R. Limitations and perspectives about scaling ozone impacts in trees[J]. Environmental Pollution, 2001, 115:373-393.
[15] Grulke N E, Johnson R, Monschein S, et al. Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites[J]. Tree Physiology, 2003, 23:923-929.
[16] Nunn A J, Reiter I M, Häberle K H, et al. Response patterns in adult forest trees to chronic ozone stress:identification of variations and consistencies[J]. Environmental Pollution, 2005, 136:365-369.
[17] Matyssek R, Bahnweg G, Ceulemans R, et al. Synopsis of the CASIROZ case study:carbon sink strength of Fagus sylvatica L. in a changing environment-experimental risk assessment of mitigation by chronic ozone impact[J]. Plant Biology, 2007, 9:163-180.
[18] Karnosky D F, Zak D R, Pregitzer K S, et al. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2:a synthesis of molecular to ecosystem results from the Aspen FACE project[J]. Functional Ecology, 2003, 17:289-304.
[19] Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157:213-228.
[20] Warwick K R, Taylor G. Contrasting effects of tropospheric ozone on five native herbs which coexist in calcareous grassland[J]. Global Change Biology, 1995, 1:143-151.
[21] Rennenberg H, Herschbach C, Polle A. Consequences of air pollution on shoot-root interactions[J]. Journal of Plant Physiology, 1996, 148:296-301.
[22] Grantz D A, Silva V, Toyota M, et al. Ozone increases root respiration but decreases leaf CO2 assimilation in cotton and melon[J]. Journal of Experimental Botany, 2003, 54:2375-2384.
[23] Sanz J, Muntifering R B, Bermejo V, et al. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum[J]. Atmospheric Environment, 2005, 39:5899-5907.
[24] Hill J O, Simpson R J, Wood J T, et al. The phosphorus and nitrogen requirements of temperate pasture species and their influence on grassland botanical composition[J]. Australian Journal of Agricultural and Resource economics, 2005, 56:1027-1039.
[25] Hill J O, Simpson R J, Moore A D, et al. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition[J]. Plant and Soil, 2006, 286:7-19.
[26] Guidi L, Degl'Innocenti E, Martinelli F, et al. Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars[J]. Environmental and Experimental Botany, 2009, 66:117-125.
[27] 列淦文,叶龙华,薛立.臭氧胁迫对植物主要生理功能的影响[J].生态学报,2014,34(2):294-306.
[28] 牛俊峰,张巍巍,李丽,等.臭氧浓度升高对香樟叶片光合色素及抗过氧化的影响及其氮素响应[J].生态学报,2012,32(16):5062-5070.
[29] 任巍,田汉勤.臭氧污染与陆地生态系统生产力[J].植物生态学报,2007,31(2):219-230.
[30] Andersen C P, Wilson R, Plocher M, et al. Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings[J]. Tree Physiology, 1997, 17:805-811.
[31] Grantz D A, Gunn S, Vu H B. O3 impacts on plant development:a meta-analysis of root/shoot allocation and growth[J]. Plant Cell and Environment, 2006, 29:1193-1209.
[32] Zouzoulas D, Koutroubas S D, Vassiliou G, et al. Effects of ozone fumigation on cotton (Gossypium hirsutum L.) morphology, anatomy, physiology, yield and qualitative characteristics of fibers[J]. Environmental and Experimental Botany, 2009, 67:293-303.
[33] Laurence J A, Andersen C P. Ozone and natural systems:understanding exposure, response and risk[J]. Environment International, 2003, 29:155-160.
[34] Díaz-de-Quijano M, Schaub M, Bassin S, et al. Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation[J]. Environmental Pollution, 2012, 169:250-157.
[35] Karlsson P E, Uddling J, Skärby L, et al. Impact of ozone on the growth of birch (Betula pendula) saplings[J]. Environmental Pollution, 2003, 124:485-495.
[36] Andersen C P, Hogsett W E, Wessling R, et al. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure[J]. Canadian Journal of Forest Research, 1991, 21:1288-1291.
[37] Calatayud V, García-Breijo F J, Júlia C, et al. Physiologica, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae[J]. Ecotoxicology and Environmental Safety, 2011, 74:1131-1138.
[38] Zeleznik P, Hrenko M, Then C, et al. CASIROZ:root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes[J]. Plant Biology, 2007, 9:298-308
[39] Grulke N E, Andersen C P, Fenn M E, et al. Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California[J]. Environmental Pollution, 1998, 103:63-73.
[40] Gerosa G, Fusaro L, Monga R, et al. A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations[J]. Atmospheric Environment, 2015, 113:41-49.
[41] Alonso R, Elvira S, González-Fernández I, et al. Drought stress does not protect Quercus ilex L. from ozone effects:results from a comparative study of two subspecies differing in ozone sensitivity[J]. Plant Biology, 2014, 16:375-384.
[42] Nikolova P S, Andersen C P, Blaschke H, et al. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies[L.] Karst)[J]. Environmental Pollution, 2010, 158:1071-1078.
[43] Lambers H, Chapin III F S, Pons T L.[M] Plant Physiological Ecology. Springer, New York, 1998, 540.
[44] Moraes R M, Bulbovas P, Furlan C M, et al. Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation[J]. Ecotoxicology and Environmental Safety, 2006, 63:306-312.
[45] Pregitzer K S, Burton A J, King J S, et al. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3[J]. New Phytologist, 2008, 180:153-161.
[46] King J S, Pregitzer K S, Zak D R, et al. Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3[J]. Oecologia, 2001, 128:237-250.
[47] Weigt R B, Häberle K H, R tzer T, et al. Whole-tree seasonal nitrogen uptake and partitioning in adult Fagus sylvatica L. and Picea abies L.[Karst.] trees exposed to elevated ground-level ozone[J]. Environmental Pollution, 2015, 196:511-517.
[48] Luedemann G, Matyssek R, Winkler J B, et al. Contrasting ozone×pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies)[J]. Plant and Soil, 2009, 323:47-60.
[49] Landolt W, Bühlmann U, Bleuler P, et al. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatic), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)[J]. Environmental Pollution, 2000, 109:473-478.
[50] Thomas V F D, Braun S, Flückiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass and growth of young spruce trees (Picea abies)[J]. Environmental Pollution, 2005, 137:507-516.
[51] Nadelhoffer K J. The potential effects of nitrogen deposition on fine root production in forest ecosystems[J]. New Phytologist, 2000, 147:131-139.
[52] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147:13-31.
[53] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwoodforests[J]. Oecologia, 2000, 12(5):389-399.
[54] Norby R J, Jackson R B. Root dynamics and global change:seeking an ecosystem perspective[J]. New Phytologist, 2000, 147:3-12.
[55] Kelting D L, Burger J A, Edwards G S. The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.)[J]. Forest Ecology and Management, 1995, 79:197-206.
[56] Mainiero R, Kazda M, Häberle K, et al. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations[J]. Environmental Pollution, 2009, 157:2658-2644.
[57] Edwards N T. Root and soil respiration responses to ozone in Pinus taeda L. seedlings[J]. New Phytologist, 1991, 118:315-321.
[58] Shan Y, Feng Z, Izuta T, et al. The individual and combined effects of ozone and simulated acid rain on growth, gas exchange rate and water-use efficiency of Pinus armandi Franch[J]. Environmental Pollution, 1996, 91:355-361.
[59] Gorisson A, van Veen J. Temporary disturbance of translocation of assimilates in Douglas firs caused by low levels of ozone and sulfur dioxide[捊漀琀猀?瀀椀渀攀?昀椀渀攀?爀漀漀琀猀?愀渀搀?洀礀挀漀爀爀栀椀稀愀?愀昀琀攀爀?昀甀渀最椀挀椀搀攀?愀瀀瀀氀椀挀愀琀椀漀渀?愀渀搀?氀漀眀?氀攀瘀攀氀?漀稀漀渀攀?攀砀瀀漀猀甀爀攀?椀渀?愀???礀攀愀爀?昀椀攀氀搀?攀砀瀀攀爀椀洀攀渀琀嬀?崀??吀爀攀攀猀????????????????????戀爀?嬀??崀??愀戀攀爀攀爀?????攀爀戀椀渀最攀爀?????氀攀砀漀甀?????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?搀爀漀甀最栀琀?愀渀搀?挀愀渀漀瀀礀?漀稀漀渀攀?攀砀瀀漀猀甀爀攀?漀渀?愀渀琀椀漀砀椀搀愀渀琀猀?椀渀?昀椀渀攀?爀漀漀琀猀?漀昀?洀愀琀甀爀攀??甀爀漀瀀攀愀渀?戀攀攀挀栀??椀???愀最甀猀?猀礀氀瘀愀琀椀挀愀???椀?嬀?崀??吀爀攀攀?倀栀礀猀椀漀氀漀最礀???  ???????????????戀爀?嬀??崀?刀攀椀挀栀?倀????匀挀栀漀攀琀琀氀攀???圀??匀琀爀漀漀???????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?伀?猀甀戀????猀甀戀???匀伀?猀甀戀????猀甀戀???愀渀搀?愀挀椀搀椀挀?爀愀椀渀?漀渀?洀礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀?椀渀?渀漀爀琀栀攀爀渀?爀攀搀?漀愀欀?猀攀攀搀氀椀渀最猀嬀?崀???愀渀愀搀椀愀渀??漀甀爀渀愀氀?漀昀??漀琀愀渀礀???????????? ???? ????戀爀?嬀??崀?匀琀爀漀漀??????刀攀椀挀栀?倀????匀挀栀漀攀琀琀氀攀???圀???椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?漀稀漀渀攀?愀渀搀?愀挀椀搀?爀愀椀渀?漀渀?眀栀椀琀攀?瀀椀渀攀??椀??倀椀渀甀猀?猀琀爀漀戀甀猀???椀??猀攀攀搀氀椀渀最猀?最爀漀眀渀?椀渀?昀椀瘀攀?猀漀椀氀猀???????礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀嬀?崀???愀渀愀搀椀愀渀??漀甀爀渀愀氀?漀昀??漀琀愀渀礀?????????????? ???????戀爀?嬀??崀??爀攀戀攀渀挀?吀???爀愀椀最栀攀爀?????栀愀渀最攀猀?椀渀?琀栀攀?挀漀洀洀甀渀椀琀礀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最椀?愀渀搀?椀渀挀爀攀愀猀攀搀?昀椀渀攀?爀漀漀琀?渀甀洀戀攀爀?甀渀搀攀爀?愀搀甀氀琀?戀攀攀挀栀?琀爀攀攀猀?挀栀爀漀渀椀挀愀氀氀礀?昀甀洀椀最愀琀攀搀?眀椀琀栀?搀漀甀戀氀攀?愀洀戀椀攀渀琀?漀稀漀渀攀?挀漀渀挀攀渀琀爀愀琀椀漀渀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀??爀攀戀攀渀挀?吀???爀愀椀最栀攀爀????吀礀瀀攀猀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀?漀昀?洀愀琀甀爀攀?戀攀攀挀栀?愀渀搀?猀瀀爀甀挀攀?愀琀?漀稀漀渀攀?昀甀洀椀最愀琀攀搀?愀渀搀?挀漀渀琀爀漀氀?昀漀爀攀猀琀?瀀氀漀琀猀嬀?崀???渀瘀椀爀漀渀洀攀渀琀愀氀??漀渀椀琀漀爀椀渀最?愀渀搀??猀猀攀猀猀洀攀渀琀???  ??????????????戀爀?嬀??崀??愀戀攀爀攀爀?????爀攀戀攀渀挀?吀???氀攀砀漀甀?????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?氀漀渀最?琀攀爀洀?昀爀攀攀?愀椀爀?漀稀漀渀攀?昀甀洀椀最愀琀椀漀渀?漀渀???猀甀瀀?????猀甀瀀?一?愀渀搀?琀漀琀愀氀?一?椀渀??椀??愀最甀猀?猀礀氀瘀愀琀椀挀愀??椀??愀渀搀??猀猀漀挀椀愀琀攀搀?洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最椀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀??渀搀爀攀眀?????椀氀氀攀猀欀漀瘀??????倀爀漀搀甀挀琀椀瘀椀琀礀?愀渀搀?挀漀洀洀甀渀椀琀礀?猀琀爀甀挀琀甀爀攀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最愀氀?猀瀀漀爀漀挀愀爀瀀猀?甀渀搀攀爀?椀渀挀爀攀愀猀攀搀?愀琀洀漀猀瀀栀攀爀椀挀??伀?猀甀戀????猀甀戀??愀渀搀?伀?猀甀戀????猀甀戀?嬀?崀???挀漀氀漀最礀??攀琀琀攀爀猀???  ???????????????戀爀?嬀??崀?刀漀琀栀???刀???愀栀氀攀礀?吀????吀栀攀?攀昀昀攀挀琀?漀昀?愀挀椀搀?瀀爀攀挀椀瀀椀琀愀琀椀漀渀?愀渀搀?漀稀漀渀攀?漀渀?琀栀攀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀攀?漀昀?爀攀搀?猀瀀爀甀挀攀?猀愀瀀氀椀渀最猀嬀?崀??圀愀琀攀爀???椀爀??愀渀搀?匀漀椀氀?倀漀氀氀甀琀椀漀渀????????? ???????????戀爀?嬀??崀?倀??????爀攀稀?匀漀戀愀?????甀攀挀欀?吀????倀甀瀀瀀椀?倀???椀?攀琀?愀氀???椀???渀琀攀爀愀挀琀椀漀渀猀?漀昀?攀氀攀瘀愀琀攀搀??伀?猀甀戀????猀甀戀???一??猀甀戀????猀甀戀??愀渀搀?伀?猀甀戀????猀甀戀??漀渀?洀礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀??最愀猀?攀砀挀栀愀渀最攀?愀渀搀?一?洀攀琀愀戀漀氀椀猀洀?椀渀?猀愀瀀氀椀渀最猀?漀昀?匀挀漀琀猀?瀀椀渀攀嬀?崀??倀氀愀渀琀?愀渀搀?匀漀椀氀????????????? ???????戀爀?嬀? 崀?匀挀栀氀漀琀攀爀????圀椀渀欀氀攀爀???????渀攀樀愀?????椀?攀琀?愀氀???椀??匀栀漀爀琀?琀攀爀洀?攀昀昀攀挀琀猀?漀昀?漀稀漀渀攀?漀渀?琀栀攀?瀀氀愀渀琀?爀栀椀稀漀猀瀀栀攀爀攀?戀甀氀欀?猀漀椀氀?猀礀猀琀攀洀?漀昀?礀漀甀渀最?戀攀攀挀栀?琀爀攀攀猀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀?倀栀椀氀氀椀瀀猀?刀????娀愀欀???刀???漀氀洀攀猀?圀?????椀挀爀漀戀椀愀氀?挀漀洀洀甀渀椀琀礀?挀漀洀瀀漀猀椀琀椀漀渀?愀渀搀?昀甀渀挀琀椀漀渀?戀攀渀攀愀琀栀?琀攀洀瀀攀爀愀琀攀?琀爀攀攀猀?攀砀瀀漀猀攀搀?琀漀?攀氀攀瘀愀琀攀搀?愀琀洀漀猀瀀栀攀爀椀挀??伀?猀甀戀????猀甀戀??愀渀搀?琀爀漀瀀漀猀瀀栀攀爀椀挀?伀?猀甀戀????猀甀戀?嬀?崀??伀攀挀漀氀漀最椀愀???  ???????????????and nitrogen gradient in Switzerland[J]. Phyton (Austria), 2002, 42:223-228.
[60] Grulke N E, Andersen C P, Hogsett W E. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient[J]. Tree Physiology, 2001, 21:173-181.
[61] Read D. Biodiversity:plants on the web[J]. Nature, 1998, 396(6706):22-23.
[62] Kainulainen P, Utriainen J, Holopainen J K, et al. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system:effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds[J]. Global Change Biology, 2000, 6:345-355.
[63] Mahoney M J, Chevone B I, Skelly J M, et al. Influence of mycorrhizae on the growth of loblolly pine seedlings exposed to ozone and sulphur dioxide[J]. Phytopathology, 1985, 75:679-682.
[64] Keane K D, Manning W J. Effects of ozone and simulated acid rain on birch seedling growth and formation of ectomycorrhizae[J]. Environmental Pollution, 1988, 52:55-65.
[65] Díaz G, Barrantes O, Honrubia M, et al. Effect of ozone and sulphur dioxide on mycorrhizae of Pinus halepensis Miller[J]. Annales des Sciences Forestieá res, 1996, 53:849-856.
[66] Rantanen L, Palomaki V, Holopainen T. Interactions between exposure to O3 and nutrient status of trees-effects on nutrient content and uptake, grwoth, mycorrhiza and needle ultra-structure[J]. New Phytologist, 1994, 128:679-687.
[67] Manninen A M, Laatikainen T, Holopainen T. Condition of S