[1] 杨万勤, 邓仁菊, 张健.森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12):2889-2895.
[2] Chen, F S, Feng X, Liang C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China[J]. Ecological Research, 2012, 27:923-932.
[3] Peng S L, Liu Q. The dynamics of forest litter and its responses to global warming[J].Acta Ecologica Sinica, 2002, 22(9):1534-1544.
[4] Peter john W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimental elevated soil temperature[J]. Ecological Applications, 1994, 4:617-625.
[5] Van Cleve K, Oechel W C, Horn J L. Response of black spruce (Picea mariana) ecosystem to soil temperature modification in interior Alaska[J]. Canandian Journal of Forest Research, 1990, 20:1530-1535.
[6] 刘瑞鹏, 毛子军, 李兴欢, 等.模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J].生态学报,2013,33(18):5661-5667.
[7] 郜士垒,何宗明,黄志群,等.不同年龄序列杉木人工林凋落物数量、组成及动态变化[J]. 江西农业大学学报, 2015, 37(4):638-644.
[8] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[J]. Ambio, 2002, 31(2):64-71.
[9] 涂利华,胡庭兴,张健,等.模拟氮沉降对两种竹林不同凋落物组分分解过程养分释放的影响[J].生态学报,2011,31(6):1547-1557.
[10] 韩雪,王春梅,蔺照兰. 模拟氮沉降对温带森林凋落物分解的影响[J]. 生态环境学报, 2014, 23(9):1503-1508.
[11] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997, 5:1-25.
[12] 魏强, 凌雷, 王多锋, 等.甘肃兴隆山主要森林类型凋落物累积量及其影响因子[J]. 林业科学研究, 2015, 28(6):818-825.
[13] 汪金松, 赵秀海, 张春雨, 等. 改变C源输入对油松人工林土壤分解的影响[J]. 生态学报, 2012, 32(9):2768-2777.
[14] 陈伏生. 城乡梯度森林生态过程研究[M]. 北京:中国林业出版社, 2013.
[15] Hobbie S E, Gough L. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories[J]. Oecologia, 2004, 140:113-124.
[16] Limpens J, Berendse F. How litter quality affects mass loss and N loss from decomposing Sphagnum[J]. Oikos, 2003,103:537-547.
[17] Prescott C E. Dose nitrogen availability control rates of litter decomposition in forest[J]. Plant and Soil, 1995, 168:83-88.
[18] Prescott C E, Bleuins L L. Litter decomposition in British Columbia forests influences of forestry activities[J]. Journal of Ecosystems and Management, 2004, 5(2):30-43.
[19] Berg B, Ekbohm G. Litter massloss rates and decomposition patterns in some needle and leaf litter types Long-term decomposition in a Scots pine forest[J]. Ⅶ. Can J Bot, 1991, 69:1449-1456.
[20] 董敦义,李子川,桂仁意,等.夏季与秋季钩梢对5年生毛竹竹材物理力学性质的影响[J]. 江西农业大学学报,2015,37(2):225-230.
[21] 李迎春, 杨清平,郭子武,等. 毛竹林持续高温干旱灾害特征及影响因素分析[J]. 林业科学研究, 2015, 28(5):646-653.
[22] 杨清培, 杨光耀, 宋庆妮, 等. 竹子扩张生态学研究:过程、后效与机制[J]. 植物生态学报, 2015, 39(1):110-124.
[23] 孙棣棣,徐秋芳,田甜,等. 不同栽培历史毛竹林土壤微生物生物量及群落组成变化[J]. 林业科学, 2011, 47(7):181-186.
[24] Li Z J, Jiang Z H, Cai Z Y, et al. Dynamic mechanical thermal analysis of moso bamboo (Phyllostachys heterocycla) at different moisture content[J]. BioResources, 2012, 7(2):1548-1557.
[25] 唐轶琳, 周本智, 邓宗付, 等.不同海拔高度毛竹林凋落量动态分析[J].林业科学研究, 2013, 26(2):214-219.
[26] 刘广路, 范少辉, 官凤英, 等. 毛竹凋落叶组成对叶凋落物分解的影响[J]. 生态学杂志, 2011, 30(8):1598-1603.
[27] Fang X M, Chen F S, Wan S Z, et al. Topsoil and deep soil organic carbon concentration and stability vary with aggregate size and vegetation type in subtropical China[J]. PLoS ONE, 2015, 10(9):e0139380. doi:10.1371/journal.pone.0139380.
[28] Zou L Q, Chen F S, Duncan D S, et al. Reforestation and slope-position effects on nitrogen, phosphorus pools, and carbon stability of various soil aggregates in a red soil hilly land of subtropical China[J]. Canandian Journal of Forest Research, 2015, 45:26-35.
[29] 代景忠, 卫智军, 何念鹏, 等. 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响[J]. 植物生态学报, 2012, 36(12):1226-1236.
[30] 国家林业局.LY/T 1228/1241-1999森林土壤分析方法[S].北京:中国标准出版社,2000.
[31] 翁俊, 顾鸿昊, 王志坤, 等. 氮沉降对毛竹叶片生态化学计量特征的影响[J]. 生态科学, 2015, 34(2):63-70.
[32] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9):3127-3136.
[33] Chen F S, Duncan D S, Hu X F, et al. Exogenous nutrient manipulations alter endogenous extractability of carbohydrates in decomposing foliar litters under a typical mixed forest of subtropics[J]. Geoderma, 2014, 214-215.
[34] 宋新章, 江洪, 张慧玲. 全球环境变化对森林凋落物分解的影响[J]. 生态学报, 2008, 28(9):4414-4423.
[35] 葛晓改,曾立雄,肖文发,等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J].生态学报,2015,35(3):779-787.
[36] 郭宝华, 刘广路, 范少辉, 等. 不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J]. 林业科学, 2014, 50(6):1-8.
[37] Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315:361-364.