[1] Raymond C A, Kube P D, Pinkard L, et al. Evaluation of non-destructive methods of measuring growth stress in Eucalyptus globulus: relationships between strain, wood properties and stress[J]. Forest Ecology and Management, 2004, 190(2): 187-200.
[2] Lasserre J P, Mason E G, Watt M S. Assessing corewood acoustic velocity and modulus of elasticity with two impact based instruments in 11-year-old trees from a clonal-spacing experiment of Pinus radiata D. Don. [J]. Forest Ecology and Management, 2007, 239(1): 217-221.
[3] Grabianowski M, Manley B, Walker J C F. Acoustic measurements on standing trees, logs and green lumber[J]. Wood Sci Technol, 2006, 40(3): 205-216. doi: 10.1007/s00226-005-0038-5
[4] Wessels C B, Malan F S, Rypstra T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber[J]. European Journal of Forest Research, 2011, 130(6): 881-893. doi: 10.1007/s10342-011-0484-6
[5] Chen Z Q, Karlsson B, Lundqvist S O, et al. Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce[J]. Annals of Forest Science, 2015, 72(4): 499-508. doi: 10.1007/s13595-015-0458-9
[6] Ross R J, Pellerin R F. NDE of wood-based composites with longitudinal stress wave[J]. Forest Products Journal, 1988, 38(5): 39-45.
[7] Nanami N, Nakamura N, Arima T, et al. Measuring the properties of standing trees with stress waves, 3: Evaluating the properties of standing trees for some forest stands[J]. Journal of the Japan Wood Research Society, 1993, 39(8): 903-909.
[8] Auty D, Achim A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands[J]. Forestry, 2008, 81(4): 475-487. doi: 10.1093/forestry/cpn015
[9] Kennedy S G, Cameron A D, Lee S J. Genetic relationships between wood quality traits and diameter growth of juvenile core wood in Sitka spruce[J]. Can J For Res, 2013, 43(1): 1-6. doi: 10.1139/cjfr-2012-0308
[10] 成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985: 282-464.
[11] Yanchuk A D, and Kiss G K. Genetic variation in growth and wood specific gravity and its utility in the improvement of interior spruce in British Columbia[J]. Silvae Genet, 1993, 42(2-3): 141-148.
[12] Koch L, Fins L. Genetic variation in wood specific gravity from progeny tests of ponderosa pine(Pinus ponderosa Laws. )in northern Idaho and Western Montana[J]. Silvae Genet, 2000, 49(4-5): 174-181.
[13] Cown D J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees[J]. N Z J For Sci, 1978, 8(3): 384-391.
[14] Taylor F W. Rapid determination of southern pine specific gravity with a Pilodyn tester[J]. For Sci, 1981, 27(1): 59-61.
[15] 朱景乐, 王军辉, 张守攻, 等. 毛白杨材性指标预测及选择[J]. 林业科学, 2008, 44(7): 23-28. doi: 10.3321/j.issn:1001-7488.2008.07.005
[16] 栾启福, 卢萍, 井振华, 等. Pilodyn评估杂交松活立木的基本密度及其性状相关分析[J]. 江西农业大学学报, 2011, 33(3): 548-552. doi: 10.3969/j.issn.1000-2286.2011.03.025
[17] 易敏, 赖猛, 孙晓梅, 等. 无损检测在日本落叶松材性育种中的应用前景探讨[J]. 林业科学, 2014, 50(11): 96-103.
[18] Chen Z Q, Gil M R G, Karlsson B, et al. Inheritance of growth and solid wood quality traits in a large Norway spruce population tested at two locations in southern Sweden[J]. Tree Genetics & Genomes, 2014, 10(5): 1291-1303.
[19] 曲桂林, 吴志民. 国外林业技术考察报告选编[M]. 北京: 中国林业出版社, 1996: 63-72.
[20] Wen X, Kuang Y, Shi M, et al. Biology of Hylobitelus xiaoi(Coleoptera: Curculionidae), a new pest of slash pine, Pinus elliottii[J]. Journal of Economic Entomology, 2004, 97(6): 1958-1964. doi: 10.1093/jee/97.6.1958
[21] Barnett J P, Sheffield R M. Slash pine: characteristics, history, status and trends[C]// Dickens E D, Barnett J P, Hubbard W G, et al. Slash pine: still growing and growing! Proceedings of the slash pine symposium, Jekyll Island, Georgia, USA, 23-25 April 2002. Gen. Tech. Rep. SRS-76. Asheville, NC: U. S. Department of Agriculture, Forest Service, Southern Research Station, 2005: 1-6.
[22] 潘志刚, 郑勇奇. 湿地松种源试验研究[J]. 林业科学研究, 1990, 3(4): 314-322.
[23] White T L, Hodge G R, Powell G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genetica, 1993(42): 359-359.
[24] 姜景民, 孙海菁, 刘昭息. 湿地松自由授粉家系的早期评定[J]. 林业科学研究, 1995, 8(5): 574-581.
[25] Zobel, B J. Inheritance of wood properties in conifers[J]. Silvae Genet, 1961, 10(3): 65-96.
[26] Wei X, Borralho N M G. Genetic control of basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in south east China[J]. Silvae Genetica, 1997, 46(4): 245-250.
[27] Hansen C P. Application of the Pilodyn in forest tree improvement. DFSC Series of Technical Notes. TN55[R]//Humlebaek, Denmark: DANIDA Forest Seed Centre, 2000.
[28] 姜笑梅, 骆秀琴, 殷亚方, 等. 不同湿地松种源木材材性遗传变异的研究[J]. 林业科学, 2002, 38(3): 130-135.
[29] 朱景乐, 王军辉, 张守攻, 等. Pilodyn在林木遗传改良应用中的研究进展[J]. 浙江林学院学报, 2008, 25(5): 661-665.
[30] Carter P, Briggs D, Ross R J, et al. Acoustic testing to enhance western forest values and meet customer wood quality needs[R]//Harrington C A, Schoenholtz S H. Productivity of western forests: a forest products focus. General technical report PNW-GTR-642. Portland: U. S. Department of Agriculture, Forest Service, Pacific Northwest Research, 2005: 121-129.
[31] 许秀玉, 王明怀, 仲崇禄, 等. 不同树种木材性质及其抗台风性能[J]. 浙江农林大学学报, 2014, 31(5): 751-757.
[32] 栾启福, 卢萍, 肖复明, 等. 雨雪冰冻重灾区湿地松受害情况调查及其原因初步分析[J]. 林业科学, 2008, 44(11): 50-54.
[33] Mora C R, Schimleck L R, Isik F, et al. Relationships between acoustic variables and different measures of stiffness in standing Pinus taeda trees[J]. Canadian Journal of Forest Research, 2009, 39(8): 1421-1429. doi: 10.1139/X09-062
[34] Wu S, Xu J, Li G, et al. Use of the Pilodyn for assessing wood properties in standing trees of Eucalyptus clones[J]. Journal of Forestry Research, 2010, 21(1): 68-72. doi: 10.1007/s11676-010-0011-5