[1] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge University Press, Cambridge, UK., 2013.
[2] Groffman P M, Driscoll C T, Fahey T J, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. [J]. Biogeochemistry, 2001, 56(2): 191-213. doi: 10.1023/A:1013024603959
[3] Brzostek E R, Blair J M, Dukes J S, et al. The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal[J]. Global Change Biology, 2012, 18(8): 2617-2625. doi: 10.1111/j.1365-2486.2012.02685.x
[4] Baldrian P, Šnajdr J, Merhautová V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology and Biochemistry, 2013, 56: 60-68. doi: 10.1016/j.soilbio.2012.01.020
[5] Weedon J T, George A Kowalchuk, Bodegom P M. No effects of experimental warming but contrasting seasonal patterns for soil peptidase and glycosidase enzymes in a sub-arctic peat bog[J]. Biogeochemistry, 2014, 117(1): 55-66. doi: 10.1007/s10533-013-9870-0
[6] Bastida F, Barberá G G, García C, et al. Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions[J]. Applied Soil Ecology, 2008, 38(1): 62-70. doi: 10.1016/j.apsoil.2007.09.002
[7] Wittmann C, Kähkönen M A, Llvesniemi H, et al. Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 425-433. doi: 10.1016/j.soilbio.2003.10.019
[8] Burns R. Enzyme activity in soil: location and a possible role in microbial ecology[J]. Soil Biology and Biochemistry, 1982, 14(5): 423-427. doi: 10.1016/0038-0717(82)90099-2
[9] Sowerby A, Emmett B, Beier C, et al. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations[J]. Soil Biology and Biochemistry, 2005, 37(10): 1805-1813. doi: 10.1016/j.soilbio.2005.02.023
[10] Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Science Society of America Journal, 1997, 61(2): 475-481. doi: 10.2136/sssaj1997.03615995006100020015x
[11] Weedon J, Aerts R., George A. Kowalchuk, et al. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils[J]. Biochemical Society Transactions, 2011, 39(1): 309. doi: 10.1042/BST0390309
[12] Wang X, Dong S, Gao Q, et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China[J]. Soil Biology and Biochemistry, 2014, 76: 140-142. doi: 10.1016/j.soilbio.2014.05.014
[13] Zhou X, Chen C, Wang Y, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment, 2013, 444(1): 552-558.
[14] Steinweg J M, Dukes J S, Paul E A, et al. Microbial responses to mutli-factor climate change: effects on soil enzymes[J]. Frontiers in Microbiology, 2013, 4(146): 1-11.
[15] McDaniel M D, Kaye J P, Kaye M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology and Biochemistry, 2013, 56: 90-98. doi: 10.1016/j.soilbio.2012.02.026
[16] Bengtson P, Bengtsson G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures[J]. Ecology Letters, 2007, 10(9): 783-790. doi: 10.1111/j.1461-0248.2007.01072.x
[17] Luan J, Liu S, Wang J, et al. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China[J]. Soil Biology and Biochemistry, 2011, 43(3): 503-512. doi: 10.1016/j.soilbio.2010.11.010
[18] Luan J, Liu S, Scott X. Chang, et al. Different effects of warming and cooling on the decomposition of soil organic matter in warm-temperate oak forests: a reciprocal translocation experiment[J]. Biogeochemistry, 2014, 121: 551~564. doi: 10.1007/s10533-014-0022-y
[19] 史作民, 程瑞梅, 刘世荣, 等. 河南宝天曼化香林特征及物种多样性[J]. 山地学报, 2005, 23(3): 374-380. doi: 10.3969/j.issn.1008-2786.2005.03.019
[20] 刘彦春, 暖温带锐齿栎林土壤呼吸及微生物群落结构对土壤增温和降雨减少的响应[D]. 北京: 中国林业科学研究院. 2013.
[21] Saiya-Cork K R, Sinsabaugh R L. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. doi: 10.1016/S0038-0717(02)00074-3
[22] German D P, Weintraub M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology and Biochemistry, 2011, 43(7): 1387-1397. doi: 10.1016/j.soilbio.2011.03.017
[23] Nelson D W, Sommers L E, Sparks D L, et al. Total Carbon, Or-ganic Carbon, and Organic Matter[M]//Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 1982: 539-579.
[24] Bremner J M, Mulvaney C, Nitrogen-Total[M]//Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 1982: 595-624.
[25] Magill A H, Aber J D. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology and Biochemistry, 2000, 32(5): 597-601. doi: 10.1016/S0038-0717(99)00186-8
[26] LY/T1228-999. 森林土壤pH值的测定[S]. 1999.
[27] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. doi: 10.1016/0038-0717(87)90052-6
[28] Stone M M, DeForest J L, Plante A F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory[J]. Soil Biology and Biochemistry, 2014, 75: 237-247. doi: 10.1016/j.soilbio.2014.04.017
[29] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156-159. doi: 10.1038/298156a0
[30] Shaver G R, Billings W D, Chapin F S, et al. Global change and the carbon balance of arctic ecosystems[J]. BioScience, 1992, 42(6): 433-441. doi: 10.2307/1311862
[31] Rui Y, Wang S, Xu Z, et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J]. Journal of Soils and Sediments, 2011, 11(6): 903-914. doi: 10.1007/s11368-011-0388-6
[32] Xu Z, Hu R, Xiong P, et al. Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities[J]. Applied Soil Ecology, 2010, 46(2): 291-299. doi: 10.1016/j.apsoil.2010.07.005
[33] Luo C, Xu G, Wang Y, et al. Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau[J]. Soil Biology and Biochemistry, 2009, 41(12): 2493-2500. doi: 10.1016/j.soilbio.2009.09.006
[34] Yao H, Bowman D, Shi W. Seasonal variations of soil microbial biomass and activity in warm-and cool-season turfgrass systems[J]. Soil Biology and Biochemistry, 2011, 43(7): 1536-1543. doi: 10.1016/j.soilbio.2011.03.031
[35] Bai E, Li S, Xu W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytologist, 2013, 199(2): 441-451. doi: 10.1111/nph.12252
[36] 黄雪蔓, 刘世荣, 尤业明. 固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响[J]. 林业科学研究, 2014, 27(5): 612-620.
[37] Sinsabaugh R L, Gallo M E, Lauber C, et al. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition[J]. Biogeochemistry, 2005, 75(2): 201-215. doi: 10.1007/s10533-004-7112-1
[38] Talbot J M, Bruns T D, Smith D P, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2013, 57: 282-291. doi: 10.1016/j.soilbio.2012.10.004
[39] Koch A L. Diffusion the crucial process in many aspects of the biol-ogy of bacteria, in Advances in microbial ecology [M]. 1990. Springer. 37-70.
[40] Koch O, Tscherko D, Kandeler E. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils[J]. Global Biogeochemical Cycles, 2007, 21(4): 497-507.
[41] Wallenstein M D, Mcmahon S K, Schimel J P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J]. Global Change Biology, 2009, 15(7): 1631-1639. doi: 10.1111/j.1365-2486.2008.01819.x
[42] You Y, Wang J, Huang X, et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover[J]. Ecology and Evolution, 2014, 4(5): 633-647. doi: 10.1002/ece3.969