[1] 牛勇. 中间锦鸡儿的特性及发展前景[J]. 内蒙古林业, 2013, 3: 22-23.
[2] 时永杰, 常根柱. 中间锦鸡儿[J]. 中兽医医药杂志, (专辑), 2003, 148-149.
[3] 李录章. 花棒、柠条蒸腾作用的研究[J]. 内蒙古林业, 1999, (6): 33.
[4] 杨文斌, 任建民. 柠条锦鸡儿沙柳蒸腾速率与水分关系分析[J]. 内蒙古林业科技, 1995, (3): 1-6.
[5] 王盂本, 李洪建, 柴宝峰. 柠条的水分生理生态学特性[J]. 植物生态学报, 1996, 20(6): 494-501.
[6] 王志会, 夏新莉, 尹伟伦. 不同种源的柠条锦鸡儿的生理特性与抗旱性[J]. 东北林业大学学报, 2007, 35(9): 27-32. doi: 10.3969/j.issn.1000-5382.2007.09.010
[7] 高素华, 郭建平. 毛乌素沙地优势种在高CO2浓度条件下对土壤干旱胁迫的响应[J]. 草业学报, 2003, 12(2): 36-39. doi: 10.3321/j.issn:1004-5759.2003.02.007
[8] Xu Z, Zhou G, Wang Y. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia[J]. Plant Soil, 2007, 301: 87-97. doi: 10.1007/s11104-007-9424-0
[9] 郭九峰, 孙国琴, 乔慧蕾. 水分胁迫柠条锦鸡儿叶片均一化全长cDNA文库的构建及EST分析[J]. 华北农学报, 2012, 27(3): 67-71. doi: 10.3969/j.issn.1000-7091.2012.03.013
[10] 杨杞, 张涛, 王颖, 等. 干旱胁迫下柠条锦鸡儿叶片SSH文库构建及CkWRKY1基因克隆[J]. 林业科学, 2013, 49(7): 62-68.
[11] Zhu J, Zhang L, Li W, et al. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions[J]. Plos One, 2013, 8, 1-10.
[12] 罗中钦. 大豆逆境胁迫相关microRNA的发掘与验证[D]. 北京, 中国农科院作物研究所, 2011.
[13] Zhu J, Li W, Yang W, et al. Identification of microRNAs in Caragana intermedia by highthroughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Reports, 2013, 32(9): 1339-1349. doi: 10.1007/s00299-013-1446-x
[14] Andrew F B. Plant disease resistance genes: Function meets Structure[J]. The Plant Cell, 1996, 8, 1757-1771. doi: 10.2307/3870228
[15] Blake C M, Allan W D, Richard W M, et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily[J]. The Plant Journal, 1999, 20(3): 317-332. doi: 10.1046/j.1365-313X.1999.t01-1-00606.x
[16] Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448. doi: 10.1126/science.218.4571.443
[17] 陈善福, 舒庆尧. 植物耐干旱胁迫的生物学机理及其基因工程研究进展[J]. 植物学通报, 1999, 16(5): 555-560.
[18] Cattivelli L, Rizza F, Badeck F W, et al. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics[J]. Field Crops Research, 2008, 105: 1-14. doi: 10.1016/j.fcr.2007.07.004
[19] Holmberg N, Bulow L. Improving stress tolerance in plants by gene transfer[J]. Trends in Plant Science, 1998, 3(2): 61-66. doi: 10.1016/S1360-1385(97)01163-1
[20] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227.
[21] 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制[J]. 玉米科学, 2006, 14(2): 96-100. doi: 10.3969/j.issn.1005-0906.2006.02.033
[22] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10: 1391-1406. doi: 10.1105/tpc.10.8.1391
[23] Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Molecular Biology Reporter, 2000, 42: 657-665. doi: 10.1023/A:1006321900483
[24] Jonak C, Pay A, Bogre L, et al. The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner[J]. The Plant Journal, 1993, 3(4): 611-617. doi: 10.1046/j.1365-313X.1993.03040611.x
[25] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. The Plant Journal, 2000, 23(3): 319-327. doi: 10.1046/j.1365-313x.2000.00787.x
[26] Kim J M, To T K, Ishida J, et al. Alterations of Lysine modifications on the Histone H3 N-Tail under drought stress conditions in Arabidopsis thaliana[J]. Plant Cell Physiology, 2008, 49(10): 1580-1588. doi: 10.1093/pcp/pcn133
[27] Yamada S, Katsuhara M, Kelly W B, et al. A family of transcripts encoding water channel proteins: Tissue-Specific expression in the common ice plant[J]. The Plant Cell, 1995, 7(8): 1129-1142.
[28] Bahieldin A, Mahfouz H T, Eissa H F, et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance[J]. Plant Physiology, 2005, 123, 421-427. doi: 10.1111/j.1399-3054.2005.00470.x
[29] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280: 104-106. doi: 10.1126/science.280.5360.104
[30] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology, 1999, 17: 287-291. doi: 10.1038/7036
[31] Naomi O, Yuval E, llan P, et al. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine rich repeat superfamily of plant resistance genes[J]. The Plant Cell, 1997, 9, 521-532.
[32] 王友红, 张鹏飞, 陈建群. 植物抗病基因及其作用机理[J]. 植物高技术通讯, 2005, l5(2): 71-78.