[1] 宋献方, 柳鉴容, 孙晓敏, 等. 基于CERN的中国大气降水同位素观测网络[J]. 地球科学进展, 2007, 22(7): 738-747. doi: 10.3321/j.issn:1001-8166.2007.07.010
[2] 陈衍婷, 杜文娇, 陈进生, 等. 厦门地区大气降水氢氧同位素组成特征及水汽来源探讨[J]. 环境科学学报, 2016, 36(2): 667-674.
[3] Meng Y, Liu G. Isotopic characteristics of precipitation, groundwater, and stream water in an alpine region in southwest China[J]. Environmental Earth Sciences, 2016, 75(10): 1-11.
[4] 徐庆, 刘世荣, 安树青, 等. 卧龙地区大气降水氢氧同位素特征的研究[J]. 林业科学研究, 2006, 19(6): 679-686. doi: 10.3321/j.issn:1001-1498.2006.06.002
[5] 何元庆, 姚檀栋, 杨梅学, 等. 玉龙山白水1号冰川区大气降水-冰雪-水文系统内δ18O研究的新结果[J]. 冰川冻土, 2000, 22(4): 391-393.
[6] 李广, 章新平, 许有鹏, 等. 滇南蒙自地区降水稳定同位素特征及其水汽来源[J]. 环境科学, 2016, 37(4): 1313-1320.
[7] Welker J M. Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies[J]. Hydrological Processes, 2000, 14(8): 1449-1464. doi: 10.1002/1099-1085(20000615)14:8<1449::AID-HYP993>3.0.CO;2-7
[8] Amesbury M J, Charman D J, Newnham R M, et al. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?[J]. Earth and Planetary Science Letters, 2015, 430: 149-159. doi: 10.1016/j.epsl.2015.08.015
[9] Jouzel J, Delaygue G, Landais A, et al. Water isotopes as tools to document oceanic sources of precipitation[J]. Water Resources Research, 2013, 49(11): 7469-7486. doi: 10.1002/2013WR013508
[10] 刘鑫, 宋献方, 夏军, 等. 黄土高原岔巴沟流域降水氢氧同位素特征及水汽来源初探[J]. 资源科学, 2007, 29(3): 59-66. doi: 10.3321/j.issn:1007-7588.2007.03.009
[11] Lachniet M S, Patterson W P. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects[J]. Earth and Planetary Science Letters, 2009, 284(3): 435-446.
[12] Yang X X, Yao T D, Yang W L, et al. Co-existence of temperature and amount effects on precipitation δ18O in the Asian monsoon region[J]. Geophysical Research Letters, 2011, 38(21): 1-6.
[13] Salamalikis V, Argiriou A A, Dotsika E. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic'temperature'effect[J]. Journal of Hydrology, 2016, 534: 150-163. doi: 10.1016/j.jhydrol.2015.12.059
[14] Liu J R, Song X F, Fu G B, et al. Precipitation isotope characteristics and climatic controls at a continental and an island site in Northeast Asia[J]. Climate Research, 2011, 49(1): 29-44. doi: 10.3354/cr01013
[15] Dansgaard W. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 1953, 5(4): 461-469. doi: 10.3402/tellusa.v5i4.8697
[16] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
[17] 章新平, 姚檀栋. 我国降水中δ18O的分布特点[J]. 地理学报, 1998, 53(4): 356-364. doi: 10.3321/j.issn:0375-5444.1998.04.010
[18] 刘相超, 宋献方, 夏军, 等. 东台沟实验流域降水氧同位素特征与水汽来源[J]. 地理研究, 2005, 24(2): 196-205. doi: 10.3321/j.issn:1000-0585.2005.02.005
[19] 柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531.
[20] 张贵玲, 角媛梅, 何礼平, 等. 中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土, 2015, 37(4): 1094-1103.
[21] 章新平, 田立, 刘晶淼, 等. 沿三条水汽输送路径的降水中δ18O变化特征[J]. 地理科学, 2005, 25(2): 190-196. doi: 10.3969/j.issn.1000-0690.2005.02.010
[22] 练琚愉, 陈灿, 黄忠良, 等. 鼎湖山南亚热带常绿阔叶林不同成熟度群落特征的比较[J]. 生物多样性, 2015, 23(2): 174-182.
[23] 刘岸东, 史文飞, 刘滔, 等. 森林生态景观土壤酸化及修复技术研究[J]. 亚热带水土保持, 2013, 25(2): 12-16. doi: 10.3969/j.issn.1002-2651.2013.02.003
[24] Zhou G Y, Wei X H, Wu Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China[J]. Global Change Biology, 2011, 17(12): 3736-3746. doi: 10.1111/j.1365-2486.2011.02499.x
[25] Deng Q, Hui D F, Zhang D Q, et al. Effects of Precipitation Increase on Soil Respiration: A Three-Year Field Experiment in Subtropical Forests in China[J]. Plos One, 2012, 7(7): e41493. doi: 10.1371/journal.pone.0041493
[26] 丘清燕, 陈小梅, 梁国华, 等. 模拟酸沉降对鼎湖山季风常绿阔叶林地表径流水化学特征的影响[J]. 生态学报, 2013, 33(13): 4021-4030.
[27] Zhou G Y, Peng C H, Li Y L, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Global Change Biology, 2013, 19(4): 1197-1210. doi: 10.1111/gcb.12128
[28] 刘效东, 周国逸, 张德强, 等. 鼎湖山流域下游浅层地下水动态变化及其机理研究[J]. 生态科学, 2013, 32 (2): 137-143. doi: 10.3969/j.issn.1008-8873.2013.02.001
[29] 吴建平, 梁国华, 熊鑫, 等. 鼎湖山季风常绿阔叶林土壤微生物量碳和有机碳对模拟酸雨的响应[J]. 生态学报, 2015, 35(20): 6686-6693.
[30] Otienoa D, Li Y L, Ou Y X, et al. Stand characteristics and water use at two elevations in a sub-tropical evergreen forest in southern China[J]. Agricultural and Forest Meteorology, 2014, 194: 155-166. doi: 10.1016/j.agrformet.2014.04.002
[31] Li R, Zhu S, Chen H Y H, et al. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest?[J]. Ecology Letters, 2015, 18(11): 1181-1189. doi: 10.1111/ele.12497
[32] 程静, 欧阳旭, 黄德卫, 等. 鼎湖山针阔叶混交林4种优势树种树干液流特征[J]. 生态学报, 2015, 35(12): 4097-4104.
[33] 罗艳, 周国逸, 张德强, 等. 鼎湖山三种主要林型水文学过程中总有机碳浓度对比[J]. 生态学报, 2004, 24(12): 2973-2978. doi: 10.3321/j.issn:1000-0933.2004.12.047
[34] Draxler R R, Hess G D. An overview of the HYSPLIT_4 modelling system for trajectories[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
[35] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869. doi: 10.11870/cjlyzyyhj201511008
[36] 尹观, 倪师军. 同位素地球化学[M]. 北京: 地质出版社, 2009.
[37] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
[38] IAEA/WMO. Global network for isotopes in precipitation(EB/OL). http://isohis.iaea.org.
[39] 卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学杂志, 1994, 23(1): 35-42.
[40] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
[41] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801-801.
[42] 陈中笑, 程军, 郭品文, 等. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 2010, 33(6): 667-679. doi: 10.3969/j.issn.1674-7097.2010.06.004
[43] 胡海英, 黄华茂, 杨健文. 香港地区降水氢氧同位素多尺度演变特征分析[J]. 武汉大学学报: 工学版, 2014, 47(5): 577-584.
[44] 李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11): 1458-1465.
[45] Welp L R, Lee X, Griffis T J, et al. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer[J]. Global Biogeochemical Cycles, 2012, 26(9): 902-906.
[46] Lai C T, Ehleringer J R. Deuterium excess reveals diurnal sources of water vapor in forest air[J]. Oecologia, 2011, 165(1): 213-223. doi: 10.1007/s00442-010-1721-2
[47] 胡菡, 王建力. 重庆市2013年10-12月大气降水中氢氧同位素特征及水汽来源分析[J]. 中国岩溶, 2015(3): 247-253.