[1] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122. doi: 10.1007/s00442-006-0425-0
[2] 杨阔, 黄建辉, 董丹, 等. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J]. 植物生态学报, 2010, 34(1): 17-22. doi: 10.3773/j.issn.1005-264x.2010.01.004
[3] 顾大形, 陈双林, 黄玉清, 等. 土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响[J]. 植物生态学报, 2011, 35 (12): 1219-1225.
[4] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5): 785-790. doi: 10.3321/j.issn:1001-9332.2000.05.033
[5] 陈伏生, 胡小飞, 葛刚. 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率[J]. 草业学报, 2007, 16(4): 47-54. doi: 10.3321/j.issn:1004-5759.2007.04.008
[6] 王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927-934.
[7] Liu F D, Yang W J, Wang Z S, et al. Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species[J]. Acta Oecologica, 2010, 36(2): 149-159. doi: 10.1016/j.actao.2009.11.004
[8] 张蕾蕾, 钟全林, 程栋梁, 等. 刨花楠叶片碳氮磷化学计量比与个体大小的关系[J]. 应用生态学报, 2015, 26(7): 1928-1934.
[9] Vance C P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources[J]. Plant Physiology, 2001, 127(2): 390-397. doi: 10.1104/pp.010331
[10] 严小龙, 廖红. 根系生物学: 原理与应用[M]. 北京: 科学出版社, 2007: 128.
[11] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报, 2007, 24(6): 687-694. doi: 10.3969/j.issn.1674-3466.2007.06.001
[12] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48-57. doi: 10.3773/j.issn.1005-264x.2010.01.008
[13] 宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报, 2014, 38(3): 231-237.
[14] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of process and patterns[J]. Advances in Ecological Research, 2000, 30(1): 1-67.
[15] Gusewell S. N∶P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x
[16] 周志春, 谢钰容, 金国庆, 等. 马尾松种源对磷肥的遗传反应及根际土壤营养差异[J]. 林业科学, 2003, 39(6): 62-67. doi: 10.3321/j.issn:1001-7488.2003.06.010
[17] 谢钰容, 周志春, 廖国华, 等. 低磷胁迫下马尾松种源酸性磷酸酶活性差异[J]. 林业科学, 2005, 41(3): 58-62. doi: 10.3321/j.issn:1001-7488.2005.03.010
[18] Zhang Y, Zhou Z C, Yang Q. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions[J]. Plant and Soil, 2013, 364(1): 93-104.
[19] 续九如. 林木数量遗传学[M]. 北京: 高等教育出版社, 2006: 26-33.
[20] 孔繁玲. 植物数量遗传学[M]. 北京: 中国农业大学出版社, 2006: 224-249.
[21] Han W X, Fang J Y, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[22] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628-1637.
[23] 高三平, 李俊祥, 徐明策, 等. 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J]. 生态学报, 2007, 27(3): 947-952. doi: 10.3321/j.issn:1000-0933.2007.03.015
[24] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7-20. doi: 10.1023/A:1006247623877
[25] 陈琳, 曾杰, 徐大平, 等. 氮素营养对西南桦幼苗生长及叶片养分状况的影响[J]. 林业科学, 2010, 46(5): 35-40.
[26] Schreeg L A, Santiago L S, Wright S J, et al. Stem, root, and older leaf N∶P ratios are more responsive indicators of soil nutrient availability than new foliage[J]. Ecology, 2014, 95(8): 2062-2068. doi: 10.1890/13-1671.1
[27] 庞丽, 张一, 周志春, 等. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35.
[28] Fujita Y, Robroek B J M, Ruiter P C D, et al. Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity[J]. Oikos, 2010, 119(10): 1665-1673. doi: 10.1111/j.1600-0706.2010.18427.x
[29] 樊明寿, 陈刚, 孙国荣. 低磷胁迫下玉米根中磷的运转与再利用[J]. 作物学报, 2006, 32(6): 946-948. doi: 10.3321/j.issn:0496-3490.2006.06.028
[30] 何维明, 张新时. 沙地柏对毛乌素沙地3种生境中养分资源的反应[J]. 林业科学, 2002, 38(5): 1-6. doi: 10.3321/j.issn:1001-7488.2002.05.001