[1] IPCC. Climate change 2013: the physical basis. In: Summary for Policymakers. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK & New York, NY, USA: Cambridge University Press, 2013.
[2] Beier C, Beierkuhnlein C, Wohlgemuth T, et al. Precipitation manipulation experiments-challenges and recommendations for the future[J]. Ecology Letters, 2012, 15: 899-911. doi: 10.1111/j.1461-0248.2012.01793.x
[3] 朱雅娟, 吴波, 卢琦. 干旱区对降水变化响应的研究进展[J]. 林业科学研究, 2012, 25(1): 100-106. doi: 10.3969/j.issn.1001-1498.2012.01.017
[4] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259: 60-684.
[5] Breshears D D, Cobb N S, Rich P M, et al. Regional vegetation die-off in response to global-change type drought[J]. Proceedings of the National Academy of Sciences, USA, 2005, 102: 15144-15148. doi: 10.1073/pnas.0505734102
[6] 陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展[J]. 植物生态学报, 2016, 40(9): 958-968.
[7] McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New phytologist, 2008, 178: 719-739. doi: 10.1111/j.1469-8137.2008.02436.x
[8] McDowell N. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality[J]. Plant physiology, 2011, 155: 1051-1059. doi: 10.1104/pp.110.170704
[9] Bossel H. Dynamics of forest dieback: systems analysis and simulation[J]. Ecological Modeling, 1986, 34: 259-288. doi: 10.1016/0304-3800(86)90008-6
[10] Mueller-Dumbois D. Natural dieback in forests[J]. Bioscience, 1987, 37: 575-583. doi: 10.2307/1310668
[11] Canny M J. Vessel content during transpiration-embolisms and refilling[J]. American Journal of Botany, 1997, 84: 1223-1230. doi: 10.2307/2446046
[12] Sevanto S, McDowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant, Cell & Environment, 2014, 37: 153-161.
[13] O'brien M J, David F R, Burslem P, et al. Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability[J]. New Phytologist, 2015, 205: 1083-1094. doi: 10.1111/nph.13134
[14] Wang R Q, Zhang L L, Zhang S X, et al. Water relations of Robinia pseudoacacia L. : do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia?[J]. Plant, Cell & Environment, 2014, 37(12): 2667-2678.
[15] Hanson J, Moller I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone[J]. Annals of Biochemistry, 1975, 68: 87-94. doi: 10.1016/0003-2697(75)90682-X
[16] Tyree M T, Sperry J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology and Molecular Biology, 1989, 40: 19-38. doi: 10.1146/annurev.pp.40.060189.000315
[17] Markesteijn L, Poorter L. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traitspc[J]. Plant, Cell & Environment, 2011, 34: 137-148.
[18] Cai J, Tyree M T. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 2010, 33: 1059-1069.
[19] Choat B, Jansen S, Brodribb T J. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491: 752-756. doi: 10.1038/nature11688
[20] Dickman L T, McDowell N, Sevanto S. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios[J]. Plant, Cell & Environment, 2015, 38, 729-739.
[21] Kirkham M B, Gardner W R, Gerloff G C. Regulation of cell division and cell enlargement by turgor pressure[J]. Plant Physiology, 1972, 49: 961-962. doi: 10.1104/pp.49.6.961
[22] Tyree M T, Zimmermann M H. Xylem Structure and the Ascent of Sap, 2nd Edn[M]. Berlin, Germany: Springer Verlag, 2002.