[1] Møller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants[J]. Annu Rev Plant Biol, 2007, 58: 459-481. doi: 10.1146/annurev.arplant.58.032806.103946
[2] Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche[J]. Free Radical Biology and Medicine, 2013, 54: 26-39. doi: 10.1016/j.freeradbiomed.2012.10.532
[3] 蒋景龙, 李丽, 徐皓, 等. 山黧豆根系对H2O2诱导氧化胁迫的生理应答[J]. 西北植物学报, 2014, 34(9): 1795-1800.
[4] Wan X Y, Liu J Y. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves[J]. Molecular & Cellular Proteomics. American Society for Biochemistry & Molecular Biology, 2008, 7: 1469-1488.
[5] Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annu Rev Plant Physiol, 1998, 49: 199-222. doi: 10.1146/annurev.arplant.49.1.199
[6] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annu Rev Plant Biol, 2005, 56: 165-185. doi: 10.1146/annurev.arplant.56.032604.144046
[7] Bray E A, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses[M]//Buchanan B, Gruissem W, Jones R (Eds.), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, 2000: 1158-1203.
[8] Zhu J K. Salt and drought stress signaltransduction in plants[J]. Annu Rev Plant Biol, 2002, 53: 247-273. doi: 10.1146/annurev.arplant.53.091401.143329
[9] Chater C C C, Oliver J, Casson S, et al. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development[J]. New Phytol, 2014, 202: 376-391. doi: 10.1111/nph.12713
[10] Kaur M, Gupta A K, Zhawar V K. Antioxidant response and Lea genes expression under exogenous ABA and water deficit stress in wheat cultivars contrasting in drought tolerance[J]. Journal of Plant Biochemistry and Biotechnology, 2012, 23: 18-30.
[11] Kaur L, Zhawar V K. Phenolic parameters under exogenous ABA, water stress, salt stress in two wheat cultivars varying in drought tolerance[J]. Indian Journal of Plant Physiology, 2015, 20: 151-6. doi: 10.1007/s40502-015-0156-5
[12] Desikan R, Cheung M K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. J Exp Bot, 2004, 55: 205-212.
[13] 王允, 张逸, 刘灿玉, 等. 干旱胁迫下外源ABA对姜叶片活性氧代谢的影响[J]. 园艺学报, 2016, 43(3): 587-594.
[14] Teng K, Li J, Liu L, et al. Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem Ⅱ during PEG stress[J]. Acta Physiologiae Plantarum, 2014, 36(8): 2219-2227. doi: 10.1007/s11738-014-1599-4
[15] Aroca R, Vernieri P, Ruiz-Lozano J M. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery[J]. Journal of Experimental Botany, 2008, 59: 2029-2041. doi: 10.1093/jxb/ern057
[16] Gay C, Gebicki J M. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay[J]. Analytical Biochemistry, 2000, 284: 217-220. doi: 10.1006/abio.2000.4696
[17] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts[J]. Archives of Biochemistry and Biophysics, 1968, 125: 189-198. doi: 10.1016/0003-9861(68)90654-1
[18] Prochazkova D, Sairam R H, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. P1ant Science, 2001, 161: 765-771.
[19] Cakrnak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98: 1222-1227. doi: 10.1104/pp.98.4.1222
[20] Jablonski P P, Anderson J W. Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts[J]. Plant Physiol, 1981, 67: 1239-1244. doi: 10.1104/pp.67.6.1239
[21] Anderson J V, Chevone B I, HESS J L. Seasonal variation in the antioxidant system of eastern white pine needles[J]. Plant Physiology, 1992, 98: 501-508. doi: 10.1104/pp.98.2.501
[22] Bates L S, Waldeen R P, TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil, 1973, 39: 205-207. doi: 10.1007/BF00018060
[23] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
[24] Chang E, Shi S, Liu J, et al. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR[J]. PloS One, 2012, 7: e33278. doi: 10.1371/journal.pone.0033278
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods, 2001, 25: 402-408. doi: 10.1006/meth.2001.1262
[26] Zheng L, Meng Y, Ma J, et al. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa[J]. Front Plant Sci, 2015, 6. doi:10.3389/fpls.2015.00678.
[27] Roychoudhury A, Basu S, Sengupta D N. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance[J]. Journal of Plant Physiology, 2011, 168: 317-28. doi: 10.1016/j.jplph.2010.07.009
[28] 刘灿玉, 夏杰, 韩敏, 等. 镉对姜叶片活性氧代谢影响的时间和剂量效应[J]. 园艺学报, 2016, 43(5): 927-934.
[29] Amzallag G N, Lerner H R, Poljakoff-Mayber A. Exogenous ABA as a modulator of the response of Sorghum to high salinity[J]. J Exp Bot, 1990, 41: 1529-1534. doi: 10.1093/jxb/41.12.1529
[30] Gómez-Cardenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants[J]. J Plant Growth Regul, 2003, 21: 234-240.
[31] Kamiab F, Talaie A, Khezri M, et al. Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings[J]. Plant Growth Regulation, 2013, 72: 257-268.
[32] Nounjan N, Nghia P T, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes[J]. Journal of Plant Physiology, 2012, 169: 596-604. doi: 10.1016/j.jplph.2012.01.004
[33] Hong C Y, Hsuy y T, Tsai y C, et al. Expression of ascorbate peroxidase 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl[J]. I Exp Bot, 2007, 58: 3273-3283. doi: 10.1093/jxb/erm174
[34] Sudan J, Negi B, Arora S. Oxidative stress induced expression of monodehydroascorbate reductase gene in Eleusine coracana[J]. Physiology and Molecular Biology of Plants, 2015, 21: 551-558. doi: 10.1007/s12298-015-0327-x
[35] Zhang X, Quan G, Wang J, et al. Functional validation of Phragmites communis glutathione reductase (PhaGR) as an essential enzyme in salt tolerance[J]. Applied Biochemistry and Biotechnology, 2015, 175: 3418-3430. doi: 10.1007/s12010-015-1514-5
[36] Zhang Y, Li Z, Peng Y, et al. Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments[J]. Molecules, 2015, 20: 20939-20954. doi: 10.3390/molecules201119741
[37] Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge[J]. BioMetals, 2010, 23: 927-940. doi: 10.1007/s10534-010-9329-x
[38] Bueno P, Piqueras A, Kurepa J, et al. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY 2 cell-cultures[J]. Plant Sci, 1998, 138: 27-34. doi: 10.1016/S0168-9452(98)00154-X
[39] Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. J Plant Physiol, 1998, 153: 488-496. doi: 10.1016/S0176-1617(98)80179-X
[40] Guan L, Scandalios J G. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes[J]. Physiol Plant, 1998b, 104: 413-422. doi: 10.1034/j.1399-3054.1998.1040317.x
[41] Guan L, Scandalios J G. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum[J]. Plant Physiol, 1998a, 117: 217-224. doi: 10.1104/pp.117.1.217
[42] Chowdhury S R, Choudhuri M A. Effects of CaCl2 and ABA on changes in H2O2, metabolism in two jute species under water deficit stress[J]. Journal of Plant Physiology, 1989, 135: 179-183. doi: 10.1016/S0176-1617(89)80174-9
[43] Prashanth S R, Sadhasivam V, Parida A. Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance[J]. Transgenic Res, 2008, 17: 281-291. doi: 10.1007/s11248-007-9099-6
[44] Al-Taweel K, Iwaki T, Yabuta Y, et al. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light[J]. Plant Physiol, 2007, 145: 258-265. doi: 10.1104/pp.107.101733
[45] Kim Y H, Kim C Y, Song W K, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco[J]. Planta, 2008, 227: 867-881. doi: 10.1007/s00425-007-0663-3
[46] Etrayeb A E, Kawano N, Badawi G H, et al. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses[J]. Planta, 2007, 225: 1255-1264. doi: 10.1007/s00425-006-0417-7
[47] Kornyeyev D, Logan B A, Payton P, et al. Elevated chloroplastic glutathione reductase activities decrease chillinginduced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton[J]. Funct Plant Biol, 2003, 30: 101-110. doi: 10.1071/FP02144
[48] Gaber A, Yoshimura K, Yamamoto T, et al. Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis[J]. Physiol Plant, 2006, 128: 251-262. doi: 10.1111/j.1399-3054.2006.00730.x
[49] Sawahel W A, Hassan A H. Generation of transgenic wheat plants producing high levels of the osmoprotectant praline[J]. Biotechnol Lett, 2002, 24: 721-725. doi: 10.1023/A:1015294319114
[50] Demiral T, Türkan I. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress[J]. Environ Exp Bot, 2006, 56: 72-79. doi: 10.1016/j.envexpbot.2005.01.005
[51] 相昆, 徐颖, 李国田, 等. 外源NO对低温胁迫下核桃幼苗活性氧代谢的影响[J]. 林业科学, 2016, 52(1): 143-149.
[52] Hien D T, Jacobs M, Angenon G, et al. Proline accumulation and 1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and droughttolerance[J]. Plant Sci, 2003, 165: 1059-1068. doi: 10.1016/S0168-9452(03)00301-7
[53] Bangyeekhun T, Chadchawan S, Boon-Long P. Salt tolerance induction in Thai soybean (Glycine max (L.) Merrill) by NaCl pretreatment[J]. Thai J Agric Sci, 2004, 37: 25-32.
[54] 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义[J]. 植物生理学通讯, 1984(1): 15-21.
[55] 高彩婷, 刘景辉, 徐寿军, 等. 燕麦盐胁迫响应基因的差异表达与生理响应的关系[J]. 西北植物学报, 2015, 35(7): 1385-1393.
[56] Khadri M, Tejera N A, Lluch C. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance[J]. Environ Exp Bot, 2007, 60: 211-218. doi: 10.1016/j.envexpbot.2006.10.008