[1] Jiao Y, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants[J]. Nature Reviews Genetics, 2007, 8(3):217-230. doi: 10.1038/nrg2049
[2] Nagy F, Schäfer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants[J]. Annual Review of Plant Biology, 2002, 53:329-355. doi: 10.1146/annurev.arplant.53.100301.135302
[3] Casal J J. Phytochromes, cryptochromes, phototropin:photoreceptor interactions in plants[J]. Photochemistry and Photobiology, 2000, 71(1):1-11.
[4] Ulm R, Nagy F. Signaling and gene regulation in response to ultraviolet light[J]. Current Opinion in Plant Biology, 2005, 8(5):477-482. doi: 10.1016/j.pbi.2005.07.004
[5] Quail P H. Photosensory preception and signaling in plant cells:new paradigms[J]. Current opinion of Cell Biology, 2002, 14(2):180-188. doi: 10.1016/S0955-0674(02)00309-5
[6] Parks B M, Quail P H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A[J]. Plant Cell, 1993, 5(1):39-48. doi: 10.1105/tpc.5.1.39
[7] Nagatani A, Reed J W, Chory J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A[J]. Plant Physiology, 1993, 102(1):269-277. doi: 10.1104/pp.102.1.269
[8] Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family[J]. Genes and Development, 1989, 3(11):1745-1757. doi: 10.1101/gad.3.11.1745
[9] Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes:the sequences and expression of PHYD and PHYE[J]. Plant Molecular Biology, 1994, 25(3):413-427. doi: 10.1007/BF00043870
[10] Clough R C, Vierstra R D. Phytochrome degradation[J]. Plant, Cell and Environment, 1997, 20(6):713-721. doi: 10.1046/j.1365-3040.1997.d01-107.x
[11] Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes[J]. Plant Physiology, 2002, 130(1):442-456. doi: 10.1104/pp.005389
[12] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure signaling mechanisms[J]. Annual Review of Plant Biology, 2006, 57(1):837-858. doi: 10.1146/annurev.arplant.56.032604.144208
[13] Kevei E, Schäfer E, Nagy F. Light-regulated nucleo-cytoplasmic partitioning of phytochromes[J]. Journal of Experimental Botany, 2007, 58(12):3113-3124. doi: 10.1093/jxb/erm145
[14] Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development[J]. Journal of Experimental Botany, 2010, 61(1):11-24. doi: 10.1093/jxb/erp304
[15] Quail, P H. Phytochrome-interacting factors[J]. Seminars in Cell & Developmental Biology, 2000, 11(6):457-466.
[16] Zhang Y, Mayba O, Pfeiffer A, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seeding morphogenesis through differential expression-patterning of shard target genes in Arabidopsis[J]. PLOS Genetics, 2013, 9(1):e1003244. doi: 10.1371/journal.pgen.1003244
[17] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770. doi: 10.1105/tpc.013839
[18] Khanna R, Huq E, Kikis E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors[J]. Plant Cell, 2004, 16(11):3033-3044. doi: 10.1105/tpc.104.025643
[19] Ni M, Tepperman J M, Quail P H. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light[J]. Nature, 1999, 400:781-784. doi: 10.1038/23500
[20] Huq E, Quail P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. The EMBO Journal, 2002, 21(10):2441-2450. doi: 10.1093/emboj/21.10.2441
[21] Huq E, AI-Sady B, Hudson M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyⅡ biosynthesis[J]. Science, 2004, 305:1937-1941. doi: 10.1126/science.1099728
[22] Oh E, Kim J, Park E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(11):3045-3058. doi: 10.1105/tpc.104.025163
[23] Leivar P, Monte E, AI-Sady B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels[J]. Plant Cell, 2008, 20(2):337-352. doi: 10.1105/tpc.107.052142
[24] Leivar P, Quail P H. PIFs:Pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1):19-28. doi: 10.1016/j.tplants.2010.08.003
[25] Wang H, Wang HY. Phytochrome Signaling:Time to Tight up the Loose Ends[J]. Molecular Plant, 2015, 8(4):540-551. doi: 10.1016/j.molp.2014.11.021
[26] Goyal A, Karayekov E, Galvão V C, et al. Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.[J]. Current Biology Cb, 2016, 26(24):3280. doi: 10.1016/j.cub.2016.10.001
[27] Ma D, Li X, Guo Y, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1):224-229. doi: 10.1073/pnas.1511437113
[28] Miyazaki Y, Jikumaru Y, Takase T, et al. Enhance-229ment of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana[J]. Plant Cell Reports, 2016, 35(2):455-467. doi: 10.1007/s00299-015-1896-4
[29] Shor E, Paik I, Kangisser S, et al. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis[J]. New Phytologist, 2017, 215(1):217-228. doi: 10.1111/nph.14579
[30] Monte E, Tepperman J M, AI-Sady B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development[J]. Proceedings of the National Academy of Science of the United States of America, 2004, 101(46):16091-16098. doi: 10.1073/pnas.0407107101
[31] Niwa Y, Yamashino T, Mizuno T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana[J]. Plant & Cell physiology, 2009, 50(4):838-854.
[32] Y Sakuraba, J Jeong, MY Kang, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014, 5:4636. doi: 10.1038/ncomms5636
[33] D Todaka, K Nakashima, K Maruyama, et al. Rice phytochrome-interacting factor-like protein OsPIL1 function as a key regulator of internode elongation and induces a morphological response to drought stress[J]. Proceeding of the National Academy of Science of the United States of America, 2012, 109(39):15947-15952. doi: 10.1073/pnas.1207324109
[34] He Y, Li Y, Cui L, et al. Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice[J]. Frontiers in Plant Science, 2016, 7:1963.
[35] M Kudo, S Kidokoro, T Yoshida, et al. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants[J]. Plant Biotechnology Journal, 2017, 15(4):458. doi: 10.1111/pbi.2017.15.issue-4