[1] 罗毅.干旱区绿洲滴灌对土壤盐碱化的长期影响[J].中国科学:地球科学, 2014, 44(8):1679-1688.
[2] Yang C, Chong J, Li C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant and Soil, 2007, 294(1):263-276.
[3] Gong B, Wen D, Vandenlangenberg K, et al. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves[J]. Scientia Horticulturae, 2013, 157(3):1-12.
[4] Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47(1):79-86. doi: 10.1007/s11099-009-0013-8
[5] Guo L Q, Shi D C, Wang D L. The Key Physiological Response to Alkali Stress by the Alkali-Resistant Halophyte Puccinellia tenuiflora is the Accumulation of Large Quantities of Organic Acids and into the Rhyzosphere[J]. Journal of Agronomy and Crop Science, 2010, 196(2):123. doi: 10.1111/jac.2010.196.issue-2
[6] Fang B. Effects of Various Salt-Alkaline Mixed Stresses on the State of Mineral Elements in Nutrient Solutions and the Growth of Alkali Resistant Halophyte[J]. Journal of Plant Nutrition, 2009, 32(7):1137-1147. doi: 10.1080/01904160902943163
[7] 张春英, 徐忠.上海杜鹃花栽培及应用[M].北京:中国林业出版社, 2014.
[8] Gamliel A, Katan J. Influence of seed and root exudates on fluorescent pseudomonads and fungi in solarized soil.[J]. Phytopathology, 1992, 82(3):320-327. doi: 10.1094/Phyto-82-320
[9] Jakab G, Cottier V, Toquin V, et al. β-Aminobutyric Acid-induced Resistance in Plants[J]. European Journal of Plant Pathology, 2001, 107(1):29-37. doi: 10.1023/A:1008730721037
[10] 施旭丽, 陈发棣, 房伟民, 等. β-氨基丁酸对Cd胁迫下菊花生理特性的影响[J].园艺学报, 2015, 42(12):2429-2438.
[11] Baccelli I, Mauch-Mani B. Beta-aminobutyric acid priming of plant defense:the role of ABA and other hormones.[J]. Plant Molecular Biology, 2016, 91(6):703-711. doi: 10.1007/s11103-015-0406-y
[12] Mostek A, Brner A, Weidner S. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley[J]. Plant Physiology & Biochemistry Ppb, 2015, 99:150.
[13] Quéro A, Fliniaux O, Elboutachfaiti R, et al. β-Aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum)[J]. Metabolomics, 2015, 11(5):1-13.
[14] Cao S, Li J, Yuan H, et al. β-Amino-butyric acid protects Arabidopsis against low potassium stress[J]. Acta Physiologiae Plantarum, 2008, 30(3):309-314. doi: 10.1007/s11738-007-0122-6
[15] Jakab G, Ton J, Flors V, et al. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses.[J]. Plant Physiology, 2005, 139(1):267. doi: 10.1104/pp.105.065698
[16] 韩浩章, 张丽华, 张颖, 等.苏北地区无土栽培营养液盐浓度与电导率的关系[J].天津农业科学, 2016(4):28-32. doi: 10.3969/j.issn.1006-6500.2016.04.007
[17] 萨如拉, 刘景辉, 刘伟, 等.燕麦对碱胁迫的阳离子响应机制[J].作物学报, 2014, 40(2):362-368. doi: 10.3969/j.issn.1000-2561.2014.02.026
[18] 刘建新, 王鑫, 胡浩斌, 等.硝酸镧对碱胁迫下黑麦草幼苗生长和光合生理的影响[J].植物研究, 2010, 30(6):674-679.
[19] 施海涛.植物逆境生理学实验指导[M].北京:科学出版社, 2016.
[20] 汤章城.现代植物生理学实验指南[M].北京:科学出版社, 1999.
[21] Giannopolitis C N, Ries S K. Superoxide dismutases:Ⅰ. Occurrence in higher plants.[J]. Plant Physiology, 1977, 59(2):309. doi: 10.1104/pp.59.2.309
[22] 张志良, 瞿伟菁, 李小方.植物生理学实验指导[M].北京:高等教育出版社, 2009.
[23] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
[24] Ma F, Cheng L. The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel[J]. Plant Science, 2003, 165(4):819-827. doi: 10.1016/S0168-9452(03)00277-2
[25] Milosevic N, Slusarenko A J. Active oxygen metabolism and lignification in the hypersensitive response in bean[J]. Physiological & Molecular Plant Pathology, 1996, 49(3):143-158.
[26] Thevenet D, Pastor V, Baccelli I, et al. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress[J]. New Phytologist, 2017, 213(2):552-558 doi: 10.1111/nph.14298
[27] Wu C C, Prashant S, Chen M C, et al. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming inArabidopsis[J]. Journal of Experimental Botany, 2010, 61(4):995-1002. doi: 10.1093/jxb/erp363
[28] Rajaei P, Mohamadi N. Effect of beta-aminobutyric acid (BABA) on enzymatic and non-enzymatic antioxidants of Brassica napus L. under drought stress.[J]. International Journal of Biosciences, 2013, 3(11):41-47. doi: 10.12692/ijb/3.11.41-47
[29] 尹春英, 李春阳.杨树抗旱性研究进展[J].应用与环境生物学报, 2003, 9(6):662-668. doi: 10.3321/j.issn:1006-687X.2003.06.024
[30] 杨玲, 沈海龙, 崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化[J].林业科学, 2012, 48(7):50-55.
[31] 刘建新, 王金成, 王鑫, 等.外源NO对NaHCO3胁迫下黑麦草幼苗光合生理响应的调节[J].生态学报, 2012, 32(11):3460-3466.
[32] 张丽平, Xiu-feng WANG, 史庆华, 等.黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异[J].应用生态学报, 2008, 19(8):1854-1859.
[33] Liu T, Jiang X, Shi W, et al. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain[J]. Proteomics, 2011, 11(10):2079. doi: 10.1002/pmic.v11.10
[34] Hamilton D W A, Hills A, Khler B, et al. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid.[J]. Proceedings of the National Academy of Sciences, 2000, 97(9):4967-4972. doi: 10.1073/pnas.080068897
[35] Köhler B, Blatt M R. Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid[J]. Plant Journal, 2002, 32(2):185-194. doi: 10.1046/j.1365-313X.2002.01414.x
[36] Jones R L. Annual review of plant physiology and plant molecular biology.[M]. Annual Reviews Inc., 1988.
[37] Jaleel C A, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation[J]. Colloids & Surfaces B Biointerfaces, 2007, 60(2):201-206.
[38] Gong B, Wen D, Vandenlangenberg K, et al. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves[J]. Scientia Horticulturae, 2013, 157(3):1-12.
[39] Zhang J T, Chun-Sheng M U. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius[J]. Soil Science & Plant Nutrition, 2009, 55(5):685-697.
[40] 刘强, 王庆成, 徐静, 等.外源亚精胺和精胺对NaHCO3胁迫下南蛇藤抗氧化系统的影响[J].应用生态学报, 2009, 20(3):549-554.
[41] Liu T W, Fu B, Niu L, et al. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis.[J]. Journal of Proteome Research, 2011, 10(5):2579-2589. doi: 10.1021/pr200056a
[42] Shaw A K, Bhardwaj P K, Ghosh S, et al. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)[J]. Environmental Science and Pollution Research, 2016, 23(3):2437-2453. doi: 10.1007/s11356-015-5445-z
[43] Apel K, Hirt H. Reactive Oxygen Species:Metabolism, Oxidative Stress, and Signal Transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373. doi: 10.1146/annurev.arplant.55.031903.141701
[44] Du Y L, Wang Z Y, Fan J W, et al. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying[J]. Journal of Experimental Botany, 2012, 63(13):4849-4860. doi: 10.1093/jxb/ers164
[45] Cao S Q, Ren G, Jiang L, et al. The role of β-aminobutyric acid in enhancing cadmium tolerance in Arabidopsis thaliana[J]. Russian Journal of Plant Physiology, 2009, 56(4):575-579. doi: 10.1134/S1021443709040190