[1] 高建梅, 董丽媛, 胡古, 等.哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应[J].生态学杂志, 2011, 30(10):2149-2154.
[2] Butler M, Melillo J M, Johnson J E, et al. Soil warming alters nitrogen cycling in a New England forest:implications for ecosystem function and structure[J]. Oecologia, 2012, 168(3):819-828. doi: 10.1007/s00442-011-2133-7
[3] 马志良, 赵文强, 赵春章, 等.青藏高原东缘窄叶鲜卑花高寒灌丛生长季土壤无机氮对增温和植物去除的响应[J].植物生态学报, 2018, 42(1):86-94.
[4] Salih N, Ågren G I, Hallbäcken L. Modeling response of N addition on C and N allocation in Scandinavian Norway Spruce stands[J]. Ecosystems, 2005, 8(4):373-381. doi: 10.1007/s10021-003-0103-6
[5] 韩博, 李志勇, 郭浩, 等.干旱胁迫下5种幼苗光合特性的研究[J].林业科学研究, 2014, 27(1):92-98.
[6] 郑秋红, 王兵.稳定性同位素技术在森林生态系统碳水通量组分区分中的应用[J].林业科学研究, 2009, 22(1):109-114. doi: 10.3321/j.issn:1001-1498.2009.01.019
[7] Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2):281-292.
[8] 何春霞, 张劲松, 黄辉, 等.豫东平原3种模式杨树-小麦复合系统水分利用效率的研究[J].林业科学研究, 2015, 28(5):660-668. doi: 10.3969/j.issn.1001-1498.2015.05.009
[9] 赵艳艳, 徐隆华, 姚步青, 等.模拟增温对高寒草甸植物叶片碳氮及其同位素δ13C和δ15N含量的影响[J].西北植物学报, 2016, 36(4):777-783.
[10] 郑璐嘉, 黄志群, 何宗明, 等.林龄、叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响[J].林业科学, 2015, 51(1):22-28.
[11] Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient[J]. Oecologia, 2008, 156(4):861-870. doi: 10.1007/s00442-008-1028-8
[12] Sun F F, Kuang Y W, Wen D Z, et al. Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China[J]. Journal of Soils & Sediments, 2010, 10(8):1453-1465.
[13] 黄彩芹.杉木高海拔地区造林技术[J].林业实用技术, 2016(1):17-18.
[14] 刘小飞, 林廷武, 熊德成, 等.土壤增温及降雨隔离对杉木幼林林下植被生物量的影响[J].亚热带资源与环境学报, 2014, 9(3):92-95. doi: 10.3969/j.issn.1673-7105.2014.03.013
[15] Liu X, Yang Z, Lin C, et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?[J]. Agricultural & Forest Meteorology, 2017, 246:78-85.
[16] Melillo J M, Butler S, Johnson J, et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23):9508-9512. doi: 10.1073/pnas.1018189108
[17] Zhang Q, Xie J, Lyu M, et al. Short-term effects of soil warming and nitrogen addition on the N:P stoichiometry of Cunninghamia lanceolata, in subtropical regions[J]. Plant & Soil, 2016, 411:1-13.
[18] Vallano D M, Sparks J P. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient[J]. Oecologia, 2013, 172(1):47-58. doi: 10.1007/s00442-012-2489-3
[19] Callesen I, Nilsson L O, Schmidt I K, et al. The natural abundance of 15N in litter and soil profiles under six temperate tree species:N cycling depends on tree species traits and site fertility[J]. Plant & Soil, 2013, 368(1-2):375-392.
[20] Garten C T. Variation in foliar 15N abundance and the availability of soil nitrogen on walker branch watershed[J]. Ecology, 1993, 74(7):2098-2113. doi: 10.2307/1940855
[21] 刘晓宏, 赵良菊, Menassie G, 等.东非大裂谷埃塞俄比亚段内C3植物叶片δ13C和δ15N及其环境指示意义[J].科学通报, 2007, 52(2):199-206. doi: 10.3321/j.issn:0023-074X.2007.02.013
[22] Liu W, Wang Z, Zheng W, et al. Variations in nitrogen isotopic values among various particle-sized fractions in modern soil in northwestern China[J]. Chinese Journal of Geochemistry, 2011, 30(3):295-303. doi: 10.1007/s11631-011-0513-7
[23] Amundson R, Austin A T, Schuur E A G, et al. Global patterns of the isotopic composition of soil and plant nitrogen[J]. Global Biogeochemical Cycles, 2003, 17(1):3101-3110.
[24] 刘贤赵, 张勇, 宿庆, 等.陆生植物氮同位素组成与气候环境变化研究进展[J].地球科学进展, 2014, 29(2):216-226.
[25] 刘志江, 林伟盛, 杨舟然, 等.模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响[J].生态学报, 2017, 37(1):44-53. doi: 10.3969/j.issn.1673-1182.2017.01.009
[26] 高金涛.模拟增温和氮沉降对中亚热带杉木人工林土壤微生物和酶活性的影响[D].福州: 福建师范大学, 2016.
[27] 蒋春来, 张晓山, 肖劲松, 等.我国西南地区氮沉降量不同的森林小流域中土壤自然15N丰度的分布特征[J].岩石学报, 2009, 25(5):1291-1296.
[28] Watmough S A. An assessment of the relationship between potential chemical indices of nitrogen saturation and nitrogen deposition in hardwood forests in southern Ontario[J]. Environmental Monitoring & Assessment, 2010, 164(1-4):9-20.
[29] Tcherkez G, Hodges M. How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo) respiration in C3 leaves[J]. Journal of Experimental Botany, 2008, 59(7):1685-1693. doi: 10.1093/jxb/erm115
[30] 周咏春, 程希雷, 樊江文.植物氮同位素组成与其影响因子的关系研究进展[J].草地学报, 2012, 20(6):981-989.
[31] 肖好燕, 刘宝, 张宁, 等.亚热带地区典型林分氮保留能力的差异及δ15N空间垂直分异特征[J].亚热带资源与环境学报, 2015, 10(3):17-24. doi: 10.3969/j.issn.1673-7105.2015.03.004
[32] Michener R, Lajtha K. Chapter Ⅲ. Natural 15N and 13C abundance as indicators of forest nitrogen status and soil carbon dynamics[M]//Michener R, Lajtha K. Stable Isotopes in Ecology and Environmental Science, Second Edition. Blackwell Publishing Ltd, 2008: 549-556.
[33] Aidar M P. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability[J]. New Phytologist, 2009, 183(4):980-992. doi: 10.1111/nph.2009.183.issue-4
[34] Kwak J H, Lim S S, Lee K S, et al. Temperature and air pollution affected tree ring δ13C and water-use efficiency of pine and oak trees under rising CO2, in a humid temperate forest[J]. Chemical Geology, 2016, 420:127-138. doi: 10.1016/j.chemgeo.2015.11.015
[35] Knight J D, Livingston N J, Kessel C V. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions[J]. Plant Cell & Environment, 1994, 17(2):173-179.
[36] 苏培玺, 严巧娣.内陆黑河流域植物稳定碳同位素变化及其指示意义[J].生态学报, 2008, 28(4):1616-1624. doi: 10.3321/j.issn:1000-0933.2008.04.032
[37] 刘莹, 李鹏, 沈冰, 等.采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率[J].生态学报, 2017, 37(9):3055-3064.
[38] 喻方圆, 徐锡增, Robert D G.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学, 2004, 40(2):38-44. doi: 10.3321/j.issn:1001-7488.2004.02.007
[39] 丁明明, 苏晓华, 黄秦军.欧洲黑杨基因资源稳定碳同位素组成特征[J].林业科学研究, 2006, 19(3):272-276. doi: 10.3321/j.issn:1001-1498.2006.03.002
[40] Cowan I R, Raven J A, Hartung W, et al. A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves[J]. Functional Plant Biology, 1982, 9(9):489-498.
[41] 褚广继.植物水分利用效率及其与植物内源激素关系的研究进展[J].畜牧与饲料科学, 2015(5):71-72. doi: 10.3969/j.issn.1672-5190.2015.05.026
[42] Saurer M, Siegenthaler U, Schweingruber F. The climate-carbon isotope relationship in tree rings and the significance of site conditions[J]. Tellus, 2010, 47(3):320-330.
[43] Guo J F, Yang Y S, Chen G S, et al. Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Cunninghamia lanceolata plantations in subtropical China[J]. Journal of Forestry Research, 2005, 16(1):19-22. doi: 10.1007/BF02856847
[44] Zhu S D, Liu H, Xu Q Y, et al. Are leaves more vulnerable to cavitation than branches?[J]. Functional Ecology, 2016, 30(11):1740-1744. doi: 10.1111/fec.2016.30.issue-11
[45] 石福孙, 吴宁, 罗鹏.川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J].生态学报, 2008, 28(11):5286-5293. doi: 10.3321/j.issn:1000-0933.2008.11.010
[46] 熊鑫, 张慧玲, 吴建平, 等.鼎湖山森林演替序列植物-土壤碳氮同位素特征[J].植物生态学报, 2016, 40(6):533-542.