[1] Pretzsch H, Dieler J, Matyssek R, et al. Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation[J]. Environmental Pollution, 2010, 158(4):1061-1070. doi: 10.1016/j.envpol.2009.07.035
[2] Sarkar A, Agrawal S. Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers[J]. Journal of Environmental Management, 2012, 95(2):S19-S24.
[3] Wang Y, Yang L, Kobayashi K, et al. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China[J]. Agriculture, Ecosystems & Environment, 2012, 150(1731):63-71.
[4] Oltmans S, Lefohn A, Harris J, et al. Long-term changes in tropospheric ozone[J]. Atmospheric Environment, 2006, 40(17):3156-3173. doi: 10.1016/j.atmosenv.2006.01.029
[5] Cape J. Surface ozone concentrations and ecosystem health:past trends and a guide to future projections[J]. Science of the Total Environment, 2008, 400(1):257-269.
[6] Derwent R, Simmonds P, Manning A, et al. Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland[J]. Atmospheric Environment, 2007, 41(39):9091-9098. doi: 10.1016/j.atmosenv.2007.08.008
[7] Dentener F, Keating T, Akimoto H. Hemispheric Transport of Air Pollution 2010: Part A: Ozone and Particulate Matter[R]. Air Pollution Stud, 2011, 17.
[8] Vingarzan R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38(21):3431-3442. doi: 10.1016/j.atmosenv.2004.03.030
[9] Yamasaki H, Uefuji H, Sakihama Y. Bleaching of the red anthocyanin induced by superoxide radical[J]. Archives of Biochemistry and Biophysics, 1996, 332(1):183-186. doi: 10.1006/abbi.1996.0331
[10] Chaudhary N, Agrawal S. Intraspecific responses of six Indian clover cultivars under ambient and elevated levels of ozone[J]. Environmental Science and Pollution Research, 2013, 20(8):5318-5329. doi: 10.1007/s11356-013-1517-0
[11] Hoshika Y, Pecori F, Conese I, et al. Effects of a three-year exposure to ambient ozone on biomass allocation in poplar using ethylenediurea[J]. Environmental Pollution, 2013, 180(3):299-303.
[12] Watanabe M, Hoshika Y, Koike T. Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation[J]. Journal of Plant Research, 2014, 127(2):339-345. doi: 10.1007/s10265-013-0622-y
[13] Calatayud V, García-Breijo F J, Cervero J, et al. Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae[J]. Ecotoxicol Environ Saf, 2011, 74(5):1131-1138. doi: 10.1016/j.ecoenv.2011.02.023
[14] Anderson P D, Palmer B, Houpis J L, et al. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure[J]. Environment International, 2003, 29(2):407-413.
[15] Kivimäenpää M, Selldén G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics[J]. Environmental Pollution, 2005, 137(3):466-475. doi: 10.1016/j.envpol.2005.01.033
[16] HUANG S, ZHAO T-h, JIN D-y, et al. Photosynthetic physio-response of urban Quercus mongolica leaves to surface elevated ozone concentration[J]. Liaoning Forestry Science and Technology, 2009(5):1-4.
[17] Kähkönen M P, Hopia A I, Vuorela H J, et al. Antioxidant activity of plant extracts containing phenolic compounds[J]. Journal of Agricultural and Food Chemistry, 1999, 47(10):3954-3962. doi: 10.1021/jf990146l
[18] Dizengremel P, Le Thiec D, Bagard M, et al. Ozone risk assessment for plants:central role of metabolism-dependent changes in reducing power[J]. Environmental Pollution, 2008, 156(1):11-15. doi: 10.1016/j.envpol.2007.12.024
[19] Yamaji K, Julkunen-Tiitto R, Rousi M, et al. Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth)[J]. Global Change Biology, 2003, 9(10):1363-1377. doi: 10.1046/j.1365-2486.2003.00669.x
[20] Zhang W, Feng Z, Wang X, et al. Responses of native broadleaved woody species to elevated ozone in subtropical China[J]. Environmental Pollution, 2012, 163(4):149-157.
[21] Bagard M, Le Thiec D, Delacote E, et al. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves[J]. Physiologia Plantarum, 2008, 134(4):559-574. doi: 10.1111/ppl.2008.134.issue-4
[22] Schaub M, Skelly J, Zhang J, et al. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions[J]. Environmental Pollution, 2005, 133(3):553-567. doi: 10.1016/j.envpol.2004.06.012
[23] Braun S, Schindler C, Leuzinger S. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations[J]. Environmental Pollution, 2010, 158(9):2954-2963. doi: 10.1016/j.envpol.2010.05.028
[24] Nikula S, Percy K, Oksanen E, et al. Effects of elevated ozone on growth and foliar traits of European and hybrid aspen[J]. Boreal Environment Research, 2009, 14(suppl.A):29-47.
[25] 付伟, 高江艳, 徐胜, 等.高浓度臭氧对城市白桦和银中杨光合作用的影响[J].生态学杂志, 2014, 33(12):3184-3190.
[26] 阮亚男, 何兴元, 陈玮, 等.臭氧浓度升高对油松抗氧化系统活性的影响[J].应用生态学报, 2009, 20(5):1032-1037.
[27] 张巍巍, 赵天宏, 王美玉, 等. O3浓度升高对油松光合作用的影响[J].农业环境科学学报, 2007, 26(3):1024-1028. doi: 10.3321/j.issn:1672-2043.2007.03.043
[28] Harmut A, Lichtenthaler K. Chlorophylls and carotenoids:pigments of photosynthetic membranes[J]. Method Enzymol, 1987, 148(34):350-383.
[29] Benzie I, Strain J. Ferric reducing/antioxidant power assay:direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration[J]. Methods in Enzymology, 1998, 299(1):15-27.
[30] Gillespie K M, Ainsworth E A. Measurement of reduced, oxidized and total ascorbate content in plants[J]. Nature Protocols, 2007, 2(4):871-874. doi: 10.1038/nprot.2007.101
[31] Elvira S, Alonso R, Castillo F J, et al. On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure[J]. New Phytologist, 1998, 138(3):419-432. doi: 10.1046/j.1469-8137.1998.00136.x
[32] Zheng Y, Shimizu H, Barnes J. Limitations to CO2assimilation in ozone-exposed leaves of Plantago major[J]. New Phytologist, 2002, 155(1):67-78. doi: 10.1046/j.1469-8137.2002.00446.x
[33] Zheng Y, Lyons T, Ollerenshaw J H, et al. Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major[J]. Plant Physiology and Biochemistry, 2000, 38(5):403-411. doi: 10.1016/S0981-9428(00)00755-5
[34] Zhang W, Niu J, Wang X, et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China[J]. Photosynthetica, 2011, 49(1):29-36.
[35] Mikkelsen T. Physiological responses of Fagus sylvatica L. exposed to low levels of ozone in open-top chambers[J]. Trees, 1995, 9(6):355-361.
[36] Reichenauer T G, Bolhàr-Nordenkampf H R. Mechanisms of impairment of the photosynthetic apparatus in intact leaves by ozone[J]. Zeitschrift für Naturforschung C, 1999, 54(9-10):824-829. doi: 10.1515/znc-1999-9-1031
[37] Calatayud A, Iglesias D J, Talón M, et al. Response of Spinach Leaves (Spinacia oleracea L.) to Ozone Measured by Gas Exchange, Chlorophyll a Fluorescence, Antioxidant Systems, and Lipid Peroxidation[J]. Photosynthetica, 2004, 42(1):23-29.
[38] Matyssek R, Wieser G, Ceulemans R, et al. Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)-Resume from the free-air fumigation study at Kranzberg Forest[J]. Environmental Pollution, 2010, 158(8):2527-2532. doi: 10.1016/j.envpol.2010.05.009
[39] Löw M, Herbinger K, Nunn A, et al. Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica)[J]. Trees, 2006, 20(5):539-548. doi: 10.1007/s00468-006-0069-z
[40] 张巍巍, 牛俊峰, 王效科, 等.大气臭氧浓度增加对湿地松幼苗的影响[J].环境科学, 2011, 32(6):1710-1716.
[41] 金明红, 冯宗炜, 张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响[J].环境科学, 2000, 21(3):1-5.
[42] Yu H, Chen Z, Shang H, et al. Physiological and biochemical responses of Machilus ichangensis Rehd. et Wils and Taxus chinensis (Pilger) Rehd. to elevated O3 in subtropical China[J]. Environmental Science and Pollution Research, 2017, 24(21):17418-17427. doi: 10.1007/s11356-017-9417-3
[43] Chaudhary N, Singh S, Agrawal S, et al. Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments[J]. Environmental Monitoring and Assessment, 2013, 185(9):7793-7807. doi: 10.1007/s10661-013-3136-0
[44] Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157(2):213-228. doi: 10.1046/j.1469-8137.2003.00674.x
[45] Zhang J, Ferdinand J, Vanderheyden D, et al. Variation in gas exchange within native plant species of Switzerland and relationships with ozone injury:An open-top experiment[J]. Environmental Pollution, 2001, 113(2):177-185. doi: 10.1016/S0269-7491(00)00175-5
[46] Sarkar A, Rakwal R, Bhushan Agrawal S, et al. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches[J]. Journal of Proteome Research, 2010, 9(9):4565-4584. doi: 10.1021/pr1002824