[1] Peng H H, Shan W, Kuang J F, et al. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit[J]. Planta, 2013, 238(5):937-953. doi: 10.1007/s00425-013-1944-7
[2] Liu W, Tai H, Li S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. New Phytologist, 2014, 201(4):1192-1204. doi: 10.1111/nph.12607
[3] Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factor[J]. Plant Physiology, 2011, 66(1):94-116.
[4] Robinson K A, Koepke J I, Kharodawala M, et al. A network of yeast basic helix-loop-helix interactions[J]. Nucleic Acids Research, 2000, 28(22):4460-4466. doi: 10.1093/nar/28.22.4460
[5] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770. doi: 10.1105/tpc.013839
[6] Reguera M, Peleg Z, Blumwald E. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops[J]. Biochim Biophys Acta, 2012, 1819(2):186-194. doi: 10.1016/j.bbagrm.2011.08.005
[7] Heisler M G, Atkinson A, Bylstra Y H, et al. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7):1089-1098.
[8] Ito S, Song Y H, Josephson-Day A R, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci, USA, 2012, 109(9):3582-3587. doi: 10.1073/pnas.1118876109
[9] Zhao H, Wang X, Zhu D, et al. A single amino acid substitution in Ⅲf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis[J]. Journal of Biological Chemistry, 2012, 287(17):14109-14121. doi: 10.1074/jbc.M111.280735
[10] Reymond M C, Brunoud G, Chauvet A, et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA[J]. Plant Cell, 2012, 24(7):2812-2825. doi: 10.1105/tpc.112.097915
[11] Leivar P, Tepperman J M, Cohn M M, et al. Dynamic antagonism between phytochromes and PIF family basic helixloop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis[J]. Plant Cell, 2012, 24(4):1398-1419. doi: 10.1105/tpc.112.095711
[12] Zhang L Y, Bai M Y, Wu J, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J]. Plant Cell, 2009, 21(12):3767-3780. doi: 10.1105/tpc.109.070441
[13] Jiang Y Q, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress[J]. Molecular Genetics and Genomics, 2009, 282(5):503-516. doi: 10.1007/s00438-009-0481-3
[14] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17(8):1043-1054.
[15] Nakata M, Mitsuda N, Herde M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656. doi: 10.1105/tpc.113.111112
[16] Seo J S, Joo J, Kim M J, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal, 2011, 65(6):907-921. doi: 10.1111/tpj.2011.65.issue-6
[17] Zhou J, Li L, Wang J L, et al. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis[J]. Journal of Plant Physiology, 2009, 166(12):1296-1306. doi: 10.1016/j.jplph.2009.02.007
[18] Yang T, Yao S, Hao L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J]. Plant Cell Rep, 2016, 35(11):2309-2323. doi: 10.1007/s00299-016-2036-5
[19] Ji X Y, Nie X G, Liu Y J, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiology, 2016, 36(2):193-207.
[20] Ji X Y, Wang L Q, Nie X G, et al. A novel method to identify the DNA motifs recognized by a defined transcription factor[J]. Plant Molecular Biology, 2014, 86(4-5):367-380. doi: 10.1007/s11103-014-0234-5
[21] Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions:betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal, 1987, 6(13):3901-3907. doi: 10.1002/embj.1987.6.issue-13
[22] Dunn M A, White A J, Vural S, et al. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.)[J]. Plant Molecular Biology, 1998, 38(4):551-564. doi: 10.1023/A:1006098132352
[23] Matton D P, Prescott G, Bertrand C, et al. Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato[J]. Plant Molecular Biology, 1993, 22(2):279-291. doi: 10.1007/BF00014935
[24] Chen Y Y, Li M Y, Wu X J, et al. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot[J]. Molecular Breeding, 2015, 35: 125.
[25] 杨鹏程, 周波, 李玉花.植物花青素合成相关的bHLH转录因子[J].植物生理学报, 2012, 48(8):747-758.
[26] 光杨其, 宋桂成, 张金凤, 等. 1个新棉花bHLH类基因GhbHLH130的克隆及表达分析[J].棉花学报, 2014, 26(4):363-370. doi: 10.3969/j.issn.1002-7807.2014.04.012
[27] Xue G P. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif[J]. Biochim Biophys Acta, 2002, 1577:63-72. doi: 10.1016/S0167-4781(02)00410-4
[28] Feng X M, Zhao Q, Zhao L L, et al. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple[J]. BMC Plant Biol, 2012, 12: 22.
[29] Huang X S, Wang W, Zhang Q, et al. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J]. Plant Physiology, 2013, 162(2):1178-1194. doi: 10.1104/pp.112.210740