[1] Grove M D, Spencer G F, Rohwedder W K, et al. Brassinolide a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728):216-217. doi: 10.1038/281216a0
[2] Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263. doi: 10.1038/nature01958
[3] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell Online, 2007, 19(2):473-484. doi: 10.1105/tpc.106.044792
[4] Azpiroz R, Wu Y, Lo Cascio J C, et al. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation[J]. The Plant Cell, 1998, 10(2):219-230. doi: 10.1105/tpc.10.2.219
[5] Choe S, Fujioka S, Noguchi T, et al. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis[J]. Plant Journal, 2001, 26(6):573-582. doi: 10.1046/j.1365-313x.2001.01055.x
[6] Divi U K, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways[J]. BMC Plant Biology, 2010, 10(1):151. doi: 10.1186/1471-2229-10-151
[7] Liu T, Zhang J, Wang M, et al. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.)[J]. Plant Cell Report, 2007, 26(12):2091-2099. doi: 10.1007/s00299-007-0418-4
[8] Peng Z H, Lu Y, Li L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetic, 2013, 45(4):456-461. doi: 10.1038/ng.2569
[9] Zhao H., Peng Z, Fei B, et al. BambooGDB:a bamboo genome database with functional annotation and an analysis platform[J]. Database, 2014, 2014(10):bau006.
[10] 张春玲.毛竹笋-竹生长发育过程系统分析与生长素相关基因研究[D].北京: 中国林业科学研究院, 2014: 5-6.
[11] Wang H Y, Cui K, He C Y, et al. Endogenous hormonal equilibrium linked to bamboo culm development[J]. Genetics and Molecular Research, 2015, 14(3):11312-11323. doi: 10.4238/2015.September.22.25
[12] 方楷, 杨光耀, 杨清培, 等.毛竹成竹过程中内源激素动态变化[J].江西农业大学学报, 2011, 33(6):1107-1111. doi: 10.3969/j.issn.1000-2286.2011.06.014
[13] 丁兴萃.毛竹笋体生长发育过程中内源激素的动态分析[J].竹子研究汇刊, 1997, 16(2):53-62.
[14] 崔凯.毛竹茎秆快速生长的机理研究[D].北京: 中国林业科学研究院, 2011: 5-6.
[15] 黄坚钦, 刘力, 章滨森, 等.雷竹地下鞭侧芽内源激素的动态变化研究[J].林业科学, 2002, 38(3):38-41. doi: 10.3321/j.issn:1001-7488.2002.03.007
[16] 高志民, 范少辉, 高健, 等.基于CTAB法提取毛竹基因组DNA的探讨[J].林业科学研究, 2006, 19(6):725-728. doi: 10.3321/j.issn:1001-1498.2006.06.009
[17] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22):4673-4680. doi: 10.1093/nar/22.22.4673
[18] Nebert D W, Gonzalez F J. P450 genes:structure, evolution, and regulation[J]. Annual Review of Biochemistry, 1987, 56(1):945-993. doi: 10.1146/annurev.bi.56.070187.004501
[19] Zhao H S, Dong L L, Sun H Y, et al. Comprehensive analysis of multitissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis[J]. Scientific Reports, 2016, 6:27640. doi: 10.1038/srep27640
[20] Sun H, Li L, Lou Y, et al. Cloning and preliminary functional analysis of PeUGE gene from moso bamboo (Phyllostachys edulis)[J]. DNA and Cell Biology, 2016, 35(11):706-714. doi: 10.1089/dna.2016.3389
[21] Fan C, Ma J, Guo Q, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573. doi: 10.1371/journal.pone.0056573
[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4):402-408. doi: 10.1006/meth.2001.1262
[23] Moore M J, Query C C, Sharp P A. Splicing of precursors to mRNA by the spliceosome[M]//Gesteland R F, Atkins J F. The RNA world Cold Spring Harbor:Cold Spring Harbor laboratory Press, 1993:303-357.
[24] Clouse S D, Zurek D. Molecular analysis of brassinolide action in plant growth and development[M]//Cutler H G, Yokota T, Adam G. Brassinosteroids:Chemistry, Bioactivity & Applications, American Chemical Society, Washington DC, 1991:122-140.
[25] Domagalskam M A, Schomburg F M, Amasino R M, et al. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering[J]. Development, 2007, 134(15):2841-2850. doi: 10.1242/dev.02866
[26] Choe S, Chung Y. The regulation of brassinosteroid biosynthesis in Arabidopsis[J]. Critical Reviews in Plant Sciences, 2013, 32(6):396-410. doi: 10.1080/07352689.2013.797856
[27] Hou X, Hu W W, Shen L, et al. Global identification of DELLA target genes during Arabidopsis flower development[J]. Plant Physiology, 2008, 147(3):1126-1142. doi: 10.1104/pp.108.121301
[28] Nakamoto D, Ikeura A, Asami T, et al. Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl4[J]. Plant Physiology, 2006, 141(2):456-464. doi: 10.1104/pp.105.076273
[29] Sasse J M. Physiological actions of brassinosteroids:An update[J]. Journal of Plant Growth Regulation, 2003, 22(4), 276-288. doi: 10.1007/s00344-003-0062-3
[30] Nomura T, Sato T, Bishop J, et al. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in bassinosteroid biosynthesis[J]. Phytochemistry, 2001, 57(2):171-178. doi: 10.1016/S0031-9422(00)00440-4
[31] Asami T, Mizutani M, Shimada Y, et al. Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway[J]. Biochemical Journal, 2003, 369(1):71-76. doi: 10.1042/bj20020835
[32] 王阳, 陈永富, 高永峰, 等.异源过表达胡杨PeDWF4基因提高烟草对非生物胁迫的耐性[J].基因组学与应用生物学, 2017(10):4242-4249.
[33] 兰彩耘.超量表达AtDWF4基因对芥菜生长发育及抗寒性的影响[D].昆明: 西南大学, 2016.