[1] 梁晶, 马光军, 郝冠军, 等.绿化植物废弃物对土壤中Cu、Zn、Pb和Cd形态的影响[J].农业环境科学学报, 2010, 29(3):492-499.
[2] Nowak J, Nowak D, Chevallier P, et al. Analysis of composite structure and primordial wood remains in petrified wood.[J]. Applied Spectroscopy, 2007, 61(8):889-895. doi: 10.1366/000370207781540141
[3] 杨晖.园林废弃物的资源化利用探讨[J].安徽农学通报(上半月刊), 2010, 16(15):181-182.
[4] Reyes T M, Oviedo E R, Dominguer I, et al. A systematic review on the composting of green waste: Feedstock quality and optimization strategies[J]. Waste Management, 2018, 77:486-499 doi: 10.1016/j.wasman.2018.04.037
[5] 刘景海, 张萍, 吴春水, 等.园林废弃物覆盖对北京市林地土壤养分和团聚体的影响[J].中国水土保持, 2016(6):54-58, 77. doi: 10.3969/j.issn.1000-0941.2016.06.019
[6] 张登晓, 周惠民, 潘根兴, 等.城市园林废弃物生物质炭对小白菜生长、硝酸盐含量及氮素利用率的影响[J].植物营养与肥料学报, 2014, 20(6):1569-1576.
[7] 张强, 孙向阳, 任忠秀, 等.园林绿化废弃物堆肥用作花卉栽培基质的效果评价[J].中南林业科技大学学报, 2011, 31(9):7-13. doi: 10.3969/j.issn.1673-923X.2011.09.002
[8] 张强, 孙向阳, 任忠秀, 等.调节C/N及添加菌剂与木酢液对园林绿化废弃物堆肥效果的影响[J].植物营养与肥料学报, 2012, 18(4):990-998.
[9] Zhang, L, Sun Xiang-yang, Tian, Y et al. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis[J]. Scientia Horticulturae, 2014, 176:70-78. doi: 10.1016/j.scienta.2014.06.021
[10] 田赟, 王海燕, 孙向阳, 等.添加竹酢液和菌剂对园林废弃物堆肥理化性质的影响[J].农业工程学报, 2010, 26(8):272-278. doi: 10.3969/j.issn.1002-6819.2010.08.046
[11] 李超, 李潞滨, 杨凯, 等.竹伐桩促腐微生物的分离筛选[J].林业科学研究, 2008, 21(2):253-257. doi: 10.3321/j.issn:1001-1498.2008.02.022
[12] Terhi K H, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips[J]. Enzyme and Microbial Technology, 2005, 36(4):461-468. doi: 10.1016/j.enzmictec.2004.10.004
[13] 吴晓丽, 顾小平, 苏梦云, 等.离体毛竹笋纤维素和木质素含量及POD和PAL活性研究[J].林业科学研究, 2008, 21(5):697-701. doi: 10.3321/j.issn:1001-1498.2008.05.019
[14] Songulashvili G, Elisashvili V, Wasser S P, et al. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes[J]. Enzyme and Microbial Technology, 2007, 41(1):57-61.
[15] 张金萍, 王敬文, 姜景民, 等.灵芝属木质素降解高效菌株筛选[J].林业科学研究, 2005, 18(1):106-108. doi: 10.3321/j.issn:1001-1498.2005.01.023
[16] 晋果果, 翁海波, 李萍萍, 等.高温木质素降解菌Geobacillus caldoxylosilyticus J16的筛选及其产酶发酵性质研究[J].中国农学通报, 2011, 27(8):334-339.
[17] 郭晓威, 王秀然, 解长睿, 等.木质素降解菌株的分离及其降解玉米秸秆过程中产酶特点[J].微生物学报, 2017, 57(12):1806-1816.
[18] 周宇光.菌种目录(第四版)[M].北京:科学技术文献出版社, 2012:694.
[19] 李雪玲, 姚一建.基于28S rDNA序列构建侧耳属系统发育树[J].菌物报, 2004, 23(3):345-350.
[20] 田林双.木质素降解相关酶类测定标准方法研究[J].畜牧与饲料科学, 2009, 30(10):13-15. doi: 10.3969/j.issn.1672-5190.2009.10.005
[21] Gong X Q, Li S Y, Sun X Y, et al. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium[J]. Environ. Technol, 2017, 38(1):872-879.
[22] Alexander N K, Korneichik T V, Hatakka A, et al. Oxidizability of unsaturated fatty acids and of a non-phenolic lignin structure in the manganese peroxidase-dependent lipid peroxidation system[J]. Enzyme and Microbial Technology, 2009, 46(2):136-140.
[23] 刘海静.小麦秸秆高效降解菌的筛选及应用效果研究[D].北京: 中国农业科学院, 2012.
[24] 尹立伟, 池玉杰, 王雪童.灰树花的系统发育分析和主要木质素降解酶的测定[J].林业科学研究, 2010, 23(4):574-580.
[25] 习兴梅, 曾光明, 郁红艳, 等.黑曲霉Aspergillus niger木质纤维素降解能力及产酶研究[J].农业环境科学学报, 2007, 26(4):1506-1511. doi: 10.3321/j.issn:1672-2043.2007.04.061
[26] 陈建军, 刘梁涛, 曹香林.高效木质素降解菌的筛选及产漆酶条件的研究[J].甘肃农业大学学报, 2018, 53(4):130-136. doi: 10.3969/j.issn.1003-4315.2018.04.020
[27] 张年磊.霉菌Aspergillus sp.F-1降解木质素化合物及其处理造纸废水的研究[D].湘潭: 湘潭大学, 2017.
[28] 周莉娜, 毛晖, 曲东.全氟辛酸和雌二醇对黄孢原毛平革菌过氧化物酶活性的影响[J].农业环境科学学报, 2013, 32(6):1134-1142.
[29] Stefan J. G, Frederick C. M, Yitzhak H, et al. Similarity of bacterial communities in sawdust- and straw-amended cow manure composts[J]. FEMS Microbiology Letters, 2004, 233(1):115-123. doi: 10.1016/j.femsle.2004.01.049