[1] 李开封, 高文华, 赵延粉, 等.中世纪暖期豫北地区水灾灾害研究[J].自然灾害学报, 2017, 26(2):81-89.
[2] Wang W H, Chen J, Liu T W, et al. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(1):223-234. doi: 10.1093/jxb/ert362
[3] Elser J J, Andersen T, Baron J S, et al. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition[J]. Science, 2009, 326:835-837. doi: 10.1126/science.1176199
[4] 郑德祥, 蔡杨新, 杨玉洁, 等.闽北闽粤栲天然林主要树种幼树器官碳氮磷化学计量特征分析[J].林业科学研究, 2017, 30(1):154-159.
[5] He M, Dijkstra F A. Drought effect on plant nitrogen and phosphorus:a meta-analysis[J]. New Phytologist, 2014, 204:924-931. doi: 10.1111/nph.12952
[6] Sainju U M, Lenssen A W, Ghimire R P. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates[J]. Field Crops Research, 2017, 210:183-191. doi: 10.1016/j.fcr.2017.05.029
[7] 王振南, 杨惠敏.植物碳氮磷生态化学计量对非生物因子的响应[J].草业科学, 2013, 30(6):927-934.
[8] Lambers H, Chapin F S, Pons T L. Plant physiological ecology[M]. New York:Springer, 1998.
[9] Liu J X, Huang W J, Zhou G Y, et al. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests[J]. Global Change Biology, 2013, 19(1):208-216. doi: 10.1111/gcb.12022
[10] 高宗宝, 王洪义, 吕晓涛, 等.氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C:N:P化学计量特征的影响[J].生态学杂志, 2017, 36(1):80-88.
[11] Schuster M J, Smith N G, Dukes J S. Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics[J]. Biogeochemistry, 2016, 129(3):389-400. doi: 10.1007/s10533-016-0240-6
[12] Townsend A R, Cleveland C C, Asner G P, et al. Controls over foliar N:P ratios in tropical rain forests[J]. Ecology, 2007, 88(1):107-118. doi: 10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2
[13] He M, Ke Z, Tan H, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions[J]. Ecology and Evolution, 2015, 5(7):1494-1503. doi: 10.1002/ece3.1441
[14] 彭海英, 李小雁, 童绍玉.内蒙古典型草原小叶锦鸡儿灌丛化对水分再分配和利用的影响[J].生态学报, 2014, 34(9):2256-2265.
[15] 李小雁.干旱地区土壤-植被-水文耦合、响应与适应机制[J].中国科学:地球科学, 2011, 41(12):1721-1730.
[16] 牛存洋, 阿拉木萨, 宗芹, 等.科尔沁沙地小叶锦鸡儿地上-地下生物量分配格局[J].生态学杂志, 2013, 32(8):1980-1986.
[17] 闫子娟, 赵鑫, 郝蕾, 等.利用PV曲线水分参数评价16种植物抗旱性[J].西部林业科学, 2017(1):112-116.
[18] 吕扬, 刘廷玺, 闫雪, 等.科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合速率对光照强度和CO2浓度的响应[J].生态学杂志, 2016, 35(12):3157-3164.
[19] 姜雪昊, 穆立蔷, 王晓春, 等. 3种护坡灌木对干旱胁迫的生理响应[J].草业科学, 2013, 30(5):678-686.
[20] 雷虹, 王凯, 田浩, 等.小叶锦鸡儿幼苗非结构性碳水化合物积累及分配对干旱胁迫的响应[J].生态学杂志, 2017, 36(11):3168-3175.
[21] Song L N, Zhu J J, Li M C, et al. Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China[J]. Environmental and Experimental Botany, 2016, 129:94-107. doi: 10.1016/j.envexpbot.2016.02.006
[22] 鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2000.
[23] 高小锋, 王进鑫, 张波, 等.不同生长期干旱胁迫对刺槐幼树干物质分配的影响[J].生态学杂志, 2010, 29(6):1103-1108.
[24] 安玉艳, 梁宗锁.植物应对干旱胁迫的阶段性策略[J].应用生态学报, 2012, 23(10):2907-2915.
[25] 陈文妃, 杜长霞, 金佩颖, 等.模拟干旱胁迫对黄瓜幼苗组织结构的影响[J].浙江农林大学学报, 2017, 34(6):1149-1154.
[26] 马富举, 李丹丹, 蔡剑, 等.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报, 2012, 23(3):724-730.
[27] Rouphael Y, Cardarelli M, Schwarz D, et al. Effects of drought on nutrient uptake and assimilation in vegetable crops[M]//Aroca R Plant Responses to Drought Stress:From Morphological to Molecular Features. New York, NY:Springer, 2012, 171-195.
[28] 张亚敏, 马克明, 李芳兰, 等.干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究[J].生态学报, 2016, 36(11):3329-3337.
[29] Razzaq M, Akram N A, Ashraf M, et al. Interactive effect of drought and nitrogen on growth, some key physiological attributes and oxidative defense system in carrot (Daucus carota, L.) plants[J]. Scientia Horticulturae, 2017, 225:373-379. doi: 10.1016/j.scienta.2017.06.055
[30] Sardans J, Grau O, Chen H Y H, et al. Changes in nutrient concentrations of leaves and roots in response to global change factors[J]. Global Change Biology, 2017, 23:3849-3856. doi: 10.1111/gcb.13721
[31] 马飞, 姬明飞, 陈立同, 等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报, 2009, 29(3):548-554. doi: 10.3321/j.issn:1000-4025.2009.03.019
[32] 王娜, 程瑞梅, 肖文发, 等.三峡库区马尾松根和叶片的生态化学计量特征[J].林业科学研究, 2016, 29(4):536-544. doi: 10.3969/j.issn.1001-1498.2016.04.011
[33] 王凯, 李依杭, 姜涛, 等.干旱胁迫对杨树幼苗氮磷化学计量特征及分配格局的影响[J].生态学杂志, 2017, 36(11):3116-3122.
[34] 贺合亮, 阳小成, 李丹丹, 等.青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J].植物生态学报, 2017, 41(1):126-135.
[35] 周红艳, 吴琴, 陈明月, 等.鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J].植物生态学报, 2017, 41(4):461-470.