[1] 王 宁, 周晓星, 刘俊祥, 等. 盐胁迫对柳树无性系SH31离子含量及光合作用的影响[J]. 林业科学研究, 2015, 28(4):565-569. doi: 10.3969/j.issn.1001-1498.2015.04.017
[2] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
[3] Parida A K and Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol Environ Saf, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010
[4] Zhu J K. Abiotic Stress Signaling and Responses in Plants[J]. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029
[5] 李 伟, 韩 娇, 黄升财, 等. 小盐芥<italic>TsPIP1;1</italic>与<italic>TsTIP1;1</italic>基因增强转基因水稻耐盐性[J]. 植物营养与肥料学报, 2017, 23(4):957-963. doi: 10.11674/zwyf.17063
[6] 胡景铭, 颜培玲, 张文娥, 等. 过表达毛葡萄<italic>PIP2;1</italic>基因对转基因拟南芥幼苗生长的影响[J]. 分子植物育种, 2018, 16(20):169-177.
[7] 边晨凯, 龙定沛, 刘雪琴, 等. 桑树Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白基因 (<italic>MnNHX1</italic>) 的克隆与耐盐力表达[J]. 林业科学, 2015, 51(8):16-25.
[8] Luo Y J, Yuan Y F, Wang R Q,<italic> et al</italic>. Functional traits contributed to the superior performance of the exotic species <italic>Robinia pseudoacacia</italic>: a comparison with the native tree Sophora japonica[J]. Tree Physiology, 2016, 36(3): 345-355. doi: 10.1093/treephys/tpv123
[9] Kou M, Garcia-Fayos P, Hu S,<italic> et al</italic>. The effect of <italic>Robinia pseudoacacia</italic> afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach[J]. Forest Ecology and Management, 2016, 375: 146-158. doi: 10.1016/j.foreco.2016.05.025
[10] Guy R D, Reid D M, Krouse H R. Factors affecting <sup>13</sup>C/<sup>12</sup>C ratios of inland halophytes. II. Ecophysiological interpretations of patterns in the field[J]. Canadian Journal of Botany, 1986, 64(11): 2700-2707. doi: 10.1139/b86-356
[11] Farquhar G D, Sharkey T D. Stomatal Conductance and Photosynthesis[J]. Annual Review of Plant Biology, 1982, 33(1): 317-345. doi: 10.1146/annurev.pp.33.060182.001533
[12] Wellburn A R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2
[13] Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207(4): 604-611. doi: 10.1007/s004250050524
[14] Tamás L, Dudíková J, Durceková K,<italic> et al</italic>. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium[J]. Journal of plant physiology, 2008, 165(11): 1193-1203. doi: 10.1016/j.jplph.2007.08.013
[15] Luo Z B, Calfapietra C, Scarascia-Mugnozza G,<italic> et al</italic>. Carbon-based secondary metabolites and internal nitrogen pools in <italic>Populus nigra</italic> under Free Air CO<sub>2</sub> Enrichment (FACE) and nitrogen fertilisation[J]. Plant and Soil, 2008, 304(1-2): 45-57. doi: 10.1007/s11104-007-9518-8
[16] Polle A, Chakrabarti K, Schurmann W,<italic> et al</italic>. Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts from Needles of Norway Spruce (<italic>Picea abies</italic> L., Karst.)[J]. Plant Physiology, 1990, 94(1): 312-319. doi: 10.1104/pp.94.1.312
[17] Gamble P E, Burke J J. Effect of Water Stress on the Chloroplast Antioxidant System: I. Alterations in Glutathione Reductase Activity[J]. Plant Physiology, 1984, 76(3): 615-621. doi: 10.1104/pp.76.3.615
[18] 王金星, 张利军, 廖资亿, 等. 刺槐实时定量PCR分析中内参基因的选择[J]. 林业科学, 2014, 50(9):167-172.
[19] 曹帮华, 郁万文, 吴丽云, 等. 盐胁迫对刺槐无性系生长和离子吸收、运输、分配的影响[J]. 山东农业大学学报: 自然科学版, 2005, 36(3):353-358.
[20] Kawa D, Magdalena J, Hector M S,<italic> et al</italic>. Phosphate-dependent root system architecture responses to salt stress[J]. Plant Physiology, 2016, 172(2): 690-706.
[21] Rodríguez A A, Córdoba A R, Ortega L,<italic> et al</italic>. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity[J]. Journal of Experimental Botany, 2004, 55(401): 1383-1390. doi: 10.1093/jxb/erh148
[22] 高明远, 甘红豪, 李清河, 等. 外源水杨酸对盐胁迫下白榆生理特性的影响[J]. 林业科学研究, 2018, 31(6):138-143.
[23] 王 文. 唐古特白刺对NaCl胁迫的生理响应机制研究[D]. 甘肃: 甘肃农业大学, 2013.
[24] 苏 丹, 李红丽, 董 智, 等. 盐胁迫对白榆无性系抗氧化酶活性及丙二醛的影响[J]. 中国水土保持科学, 2016, 14(2):9-16.
[25] 朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15):5140-5146.
[26] 周 旋, 申 璐, 金 媛, 等. 外源水杨酸对盐胁迫下茶树生长及主要生理特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(7):161-167.
[27] Chen S L, Li J K, Wang S S,<italic> et al</italic>. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of <italic>Populus euphratica</italic> and <italic>Populus tomentosa</italic>[J]. Canadian Journal of Forest Research, 2003, 33(6): 967-975. doi: 10.1139/x03-066
[28] 陆嘉惠, 吕 新, 梁永超, 等. 新疆胀果甘草幼苗耐盐性及对NaCl胁迫的离子响应[J]. 植物生态学报, 2013, 37(9):839-850.
[29] 靳 娟, 王 依, 鲁晓燕, 等. NaCl胁迫对酸枣幼苗离子吸收与分配的影响[J]. 园艺学报, 2015, 42(5):853-862.
[30] Li G W, Peng Y H, Yu X,<italic> et al</italic>. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice[J]. Journal of Plant Physiology, 2008, 165(18): 1879-1888. doi: 10.1016/j.jplph.2008.05.002
[31] Guo L, Wang Z Y, Lin H,<italic> et al</italic>. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family[J]. Cell Research, 2006, 16(3): 277-286. doi: 10.1038/sj.cr.7310035
[32] Zhu C F, Schraut D, Hartung W,<italic> et al</italic>. Differential responses of maize MIP genes to salt stress and ABA[J]. Journal of Experimental Botany, 2005, 56(421): 2971-2981. doi: 10.1093/jxb/eri294
[33] 王文铖, 崔克辉. 非生物逆境对植物水孔蛋白表达调控的研究进展[J]. 植物生理学报, 2016, 52(4):423-430.
[34] 刘 岩, 张 薇, 计东风, 等. NaCI胁迫对桑树种子萌发和Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白基因表达的影响[J]. 蚕业科学, 2013, 39(5):851-857.