[1] Hall I R, Yun W, Amicucci A. Cultivation of edible ectomycorrhizal mushrooms[J]. Trends in Biotechnology, 2003, 21(10): 433-438. doi: 10.1016/S0167-7799(03)00204-X
[2] Giomaro G M, Sisti D, Zambonelli A. Cultivation of edible ectomycorrhizal fungi by in vitro mycorrhizal synthesis[M]//Declerck S, Strullu D G, Fortin J A, et al. In vitro Culture of Mycorrhizas. Berlin: Springer, Heidelberg, 2005: 253-267.
[3] Labbé J L, Weston D J, Dunkirk N, et al. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus[J]. Frontiers in Plant Science, 2014, 5: 579.
[4] 盛江梅, 吴小芹. 菌根真菌与植物根际微生物互作关系研究[J]. 西北林学院学报, 2007, 22(5):104-108. doi: 10.3969/j.issn.1001-7461.2007.05.026
[5] 徐 漫, 傅婉秋, 戴传超, 等. 外生菌根真菌促生微生物生态功能研究进展[J]. 生态学杂志, 2018, 37(4):1246-1256.
[6] Oh S Y, Lim Y W. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom)[J]. Journal of Microbiology, 2018, 56(6): 399-407. doi: 10.1007/s12275-018-7491-y
[7] Yu F, Liang J F, Song J, et al. Bacterial Community Selection of Russula griseocarnosa Mycosphere Soil[J]. Frontiers in Microbiology, 2020, 11: 347. doi: 10.3389/fmicb.2020.00347
[8] 王 敏. 贵州市场野生食用菌多样性及营养价值与安全性评价[D]. 贵阳: 贵州师范大学, 2021.
[9] Chen Q, Qi C, Peng G, et al. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW264.7 macrophage cells via the MAPK and NF-κB signalling pathways[J]. Food and Agricultural Immunology, 2018, 29(1): 833-844. doi: 10.1080/09540105.2018.1461198
[10] 严 明, 陈 旭, 王婷婷, 等. 云南7种红菇科野生食用菌营养成分分析[J]. 中国食用菌, 2019, 38(5):32-38.
[11] 李国杰, 李赛飞, 赵 东, 等. 红菇属研究进展[J]. 菌物学报, 2015, 34(5):821-848.
[12] 肖冬来, 陈丽华, 陈宇航, 等. 利用变性梯度凝胶电泳分析正红菇菌根围土壤真菌群落多样性[J]. 热带作物学报, 2013, 34(12):2508-2512.
[13] 余文英, 胡红莉, 鲍坚东, 等. 福建正红菇保护林中壳斗科外生菌根真菌多样性研究[J]. 农业生物技术学报, 2020, 28(5):771-783.
[14] Wu J, He Z L, Wei W X, et al. Quantifying microbial biomass phosphorus in acid soils[J]. Biology and Fertility of Soils, 2000, 32(6): 500-507. doi: 10.1007/s003740000284
[15] Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter[J]. Methods of soil analysis:Part 3 Chemical methods, 1996, 5: 961-1010.
[16] Liu P, Wang X H, Li J G, et al. Pyrosequencing reveals fungal communities in the rhizosphere of Xinjiang Jujube[J]. BioMed Research International, 2015, 2015: 1-8.
[17] Retamal-Salgado J, Hirzel J, Walter I, et al. Bioabsorption and bioaccumulation of cadmium in the straw and grain of maize (Zea mays L. ) in growing soils contaminated with cadmium in different environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1399. doi: 10.3390/ijerph14111399
[18] Zhao J, Zhang R, Xue C, et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microbial Ecology, 2014, 67(2): 443-453. doi: 10.1007/s00248-013-0322-0
[19] Adams R I, Miletto M, Taylor J W, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J]. The ISME Journal, 2013, 7(7): 1262-1273. doi: 10.1038/ismej.2013.28
[20] Mori H, Maruyama F, Kato H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes[J]. DNA Research, 2014, 21(2): 217-227. doi: 10.1093/dnares/dst052
[21] Kõljalg U, Nilsson R H, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology, 2013, 22(21): 5271-5277. doi: 10.1111/mec.12481
[22] Cole J R, Wang Q, Fish J A, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis[J]. Nucleic Acids Research, 2014, 42(D1): D633-D642. doi: 10.1093/nar/gkt1244
[23] Oh S Y, Fong J J, Park M S, et al. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil[J]. PLoS One, 2016, 11(12): e0168573. doi: 10.1371/journal.pone.0168573
[24] Ye J, Joseph S D, Ji M, et al. Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars[J]. The ISME Journal, 2017, 11(5): 1087-1101. doi: 10.1038/ismej.2016.187
[25] Delacre M, Lakens D, Leys C. Why psychologists should by default use Welch’s t-test instead of Student’s t-test[J]. International Review of Social Psychology, 2017, 30(1): 92-101. doi: 10.5334/irsp.82
[26] Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO[M]. Cambridge university press, 2003: 51
[27] 许美玲, 朱教君, 孙军德, 等. 树木外生菌根菌与环境因子关系研究进展[J]. 生态学杂志, 2004, 23(5):212-217. doi: 10.3321/j.issn:1000-4890.2004.05.038
[28] 范 俐, 陈 锋. 南平市建阳区林地土壤养分与正红菇营养成分相关性的研究[J]. 食用菌学报, 2015, 22(2):82-88.
[29] 罗佳煜, 宋瑞清, 邓 勋, 等. PGPR 与外生菌根菌互作对樟子松促生作用及根际微生态环境的影响[J]. 中南林业科技大学学报, 2021, 41(9):22-34.
[30] Trappe M J, Cromack K, Caldwell B A, et al. Diversity of mat-forming fungi in relation to soil properties, disturbance, and forest ecotype at Crater Lake National Park, Oregon, USA[J]. Diversity, 2012, 4(2): 196-223. doi: 10.3390/d4020196
[31] 谢一青, 李志真, 杨宗武. pH、盐浓度及铝离子对菌根菌生长的影响[J]. 江西农业大学学报(自然科学版), 2002, 23(2):204-207.
[32] Avis P G, McLaughlin D J, Dentinger B C, et al. Long-term increase in nitrogen supply alters above-and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna[J]. New Phytologist, 2003, 160(1): 239-253. doi: 10.1046/j.1469-8137.2003.00865.x
[33] Baum C, Weihb M, Verwijstb T, et al. The effects of nitrogen fertilization and soil properties on mycorrhizal formation of Salix viminais[J]. Forest Ecology and Management, 2002, 160(1-3): 35-43. doi: 10.1016/S0378-1127(01)00470-4
[34] 刘润进, 陈应龙编著. 菌根学[M]. 北京: 科学出版社, 2007.
[35] Sawana A, Adeolu M, Gupta R S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species[J]. Frontiers in Genetics, 2014, 5: 429.
[36] Poole E J, Bending G D, Whipps J M, et al. Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro[J]. New Phytologist, 2001, 151(3): 743-751. doi: 10.1046/j.0028-646x.2001.00219.x
[37] Nguyen N H, Bruns T D. The microbiome of Pinus muricata ectomycorrhizae: community assemblages, fungal species effects, and Burkholderia as important bacteria in multipartnered symbioses[J]. Microbial Ecology, 2015, 69(4): 914-921. doi: 10.1007/s00248-015-0574-y
[38] Bending G D, Poole E J, Whipps J M, et al. Characterisation of bacteria from Pinus sylvestrisSuillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth[J]. FEMS Microbiology Ecology, 2002, 39(3): 219-227.
[39] Kataoka R, Taniguchi T, Ooshima H, et al. Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi[J]. Plant and Soil, 2008, 304(1-2): 267-275. doi: 10.1007/s11104-008-9548-x
[40] Oh S, Park M S, Lim Y W. The Influence of microfungi on the mycelial growth of ectomycorrhizal fungus Tricholoma matsutake[J]. Microorganisms, 2019, 7(6): 169.
[41] 黎妍妍, 冯 吉, 王 林, 等. 万寿菊-烟草轮作调理植烟土壤细菌群落结构的作用[J]. 中国烟草科学, 2021, 42(1):14-19.
[42] Zhou J, Bai X, Zhao R. Microbial communities in the native habitats of Agaricus sinodeliciosus from Xinjiang Province revealed by amplicon sequencing[J]. Scientific Reports, 2017, 7(1): 1-13. doi: 10.1038/s41598-016-0028-x
[43] Rilling J I, Acuña J J, Sadowsky M J, et al. Putative Nitrogen-fixing bacteria Associated with The Rhizosphere and Root Endosphere of wheat plants grown in an Andisol from southern Chile[J]. Frontiers in Microbiology, 2018, 9: 2710. doi: 10.3389/fmicb.2018.02710
[44] Costa O Y. A, de Hollander M, Agata P, et al. Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer[J]. Microbiome, 2020, 8(1): 76. doi: 10.1186/s40168-020-00836-7
[45] 许文爽. 长白山自然保护区北坡森林土壤真菌多样性的研究[D]. 大连: 辽宁师范大学, 2013: 5-6.
[46] 杨 顺, 杨 婷, 林 斌, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58(2):264-273.
[47] Michielse C B, Reijnen L, Olivain C, et al. Degradation of aromatic compounds through the β-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici[J]. Molecular Plant Pathology, 2012, 13(9): 1089-1100. doi: 10.1111/j.1364-3703.2012.00818.x