[1] 林秀艳, 彭秋发, 吕洪飞, 等. 山茶属油茶组和短柱茶组叶解剖特征及其分类学意义[J]. 植物分类学报, 2008, 46(2):183-193.
[2] 袁德义, 邹 锋, 谭晓风, 等. 油茶花芽分化及雌雄配子体发育的研究[J]. 中南林业科技大学学报, 2011, 31(3):65-70. doi: 10.3969/j.issn.1673-923X.2011.03.014
[3] 罗 帅. 施肥对油茶花芽分化及生理生化特性的影响[D]. 北京: 中国林业科学研究院, 2018.
[4] 马腾飞, 林新春. 植物SOC1/AGL20基因研究进展[J]. 浙江农林大学学报, 2013, 30(6):930-937. doi: 10.11833/j.issn.2095-0756.2013.06.019
[5] 李贵生, 孟 征,孔宏智, 等. ABC模型与花进化研究[J]. 科学通报, 2003, 48(23):2415-2421. doi: 10.3321/j.issn:0023-074X.2003.23.003
[6] 马 辉,张智俊, 罗淑萍. 植物MADS-box基因研究进展[J]. 生物技术通报, 2006, 22(6):14-18. doi: 10.3969/j.issn.1002-5464.2006.06.004
[7] 陈翠翠, 马元武, 冯永君, 等. MADS-box家族蛋白在植物开花、结实及根瘤形成中的多功能调节作用[J]. 华北农学报, 2008, 23(增刊):74-77.
[8] Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3): 464-489. doi: 10.1016/S1055-7903(03)00207-0
[9] Theissen G, Kim J T, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes[J]. Journal of Molecular Evolution, 1996, 43(5): 484-516. doi: 10.1007/BF02337521
[10] Parenicova L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS -box transcription factor family in Arabidopsis: new openings to the MADS world[J]. The Plant Cell Research, 2003, 15(7): 1538-1551. doi: 10.1105/tpc.011544
[11] Nakamura T, Song I J, Fukuda T, et al. Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family[J]. Journal of Plant Research, 2005, 118(3): 229-234. doi: 10.1007/s10265-005-0215-5
[12] Lamb K S, lrish V F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages[J]. Proceedings of the National Academy of Sciences, 2003, 100(11): 6558-6563. doi: 10.1073/pnas.0631708100
[13] Zhong X F, Dai X, Xv J H, et al. Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean[J]. Molecular Biology Reports, 2012, 39(6): 6967-6974. doi: 10.1007/s11033-012-1524-0
[14] Na X F, Jian B, Yao W W, et al. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean[J]. Plant Cell Reports, 2013, 32(8): 1219-1229. doi: 10.1007/s00299-013-1419-0
[15] Zhao S Z, Luo Y Z, Zhang Z L, et al. ZmSOC1, a MADS-Box transcription factor from Zea mays, promotes flowering in Arabidopsis[J]. International Journal of Molecular Sciences, 2014, 15(11): 19987-20003. doi: 10.3390/ijms151119987
[16] 石永春, 杨永银, 刘卫群. 烟草SOC1基因的克隆和表达分析[J]. 中国烟草学报, 2014, 20(2):99-103. doi: 10.3969/j.issn.1004-5708.2014.02.017
[17] 魏军亚, 唐 杰, 刘国银, 等. 芒果MSOC1基因的克隆与表达分析[J]. 西北植物学报, 2015, 35(6):1092-1097. doi: 10.7606/j.issn.1000-4025.2015.06.1092
[18] 王 祺,蒲媛媛,赵玉红,等. 强冬性甘蓝型冬油菜抽薹相关基因SVPSOC1的克隆与表达分析[J]. 江苏农业学报, 2020, 36(5):22-31.
[19] Borner R, Kampmann G, Chandler J, et al. A MADS domain in the transition gene involved to flowering in Arabidopsis[J]. Plant Journal, 2000, 24(5): 591-599. doi: 10.1046/j.1365-313x.2000.00906.x
[20] Dorca-Fornell C, Gregis V, Grandi V, et al. The arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems[J]. Plant Journal, 2011, 67(6): 1006-1017. doi: 10.1111/j.1365-313X.2011.04653.x
[21] 沈 威, 滕瑞敏, 李 辉, 等. 茶树 MADS-box 转录因子基因的克隆与非生物胁迫响应分析[J]. 茶叶科学, 2017, 37(6):575-585. doi: 10.3969/j.issn.1000-369X.2017.06.004
[22] Zhang Z B, Jin Y J, Wan H H, et al. Genome-wide identification and expression analysis of the MADS-box transcription factor family in Camellia sinensis[J]. Journal of Applied Genetics, 2021, 62(2): 249-264. doi: 10.1007/s13353-021-00621-8
[23] 旦帅男, 胡 颖, 何新华, 等. 金柑FcSOC1同源基因的克隆及表达分析[J]. 基因组学与应用生物学, 2015, 34(12):2651-2659.
[24] 严佳文, 解 璞, 袁启凤, 等. 火龙果开花调控转录因子基因HpSOCl的克隆与表达分析[J]. 植物生理学报, 2018, 54(10):1561-1568.
[25] 刘传娇, 王顺利, 薛憬祺, 等. 牡丹开花调控转录因子基因PrSOC1的克隆与表达分析[J]. 园艺学报, 2014, 41(11):2259-2267.
[26] Wang S, Peng M C, Chen X, et al. Molecular cloning and spatiotemporal expression of APETALA1-like gene in Lonicera macranthoides[J]. Journal of Genetics, 2018, 97(5): 1281-1288. doi: 10.1007/s12041-018-1025-6
[27] Wigge P A, Kim M C, Jaeger K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 2005, 309(5737): 1056-1059. doi: 10.1126/science.1114358
[28] 傅永福, 孟繁静. 植物的成花决定[J]. 植物生理学通讯, 1997, 33(2):81-87.
[29] Yoo S K, Chung K S, Kim J, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 770-778. doi: 10.1104/pp.105.066928
[30] Lee H, Suh S S, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18): 2366-2376.
[31] 黄国文, 韩玉珍, 傅永福. 拟南芥SUA41基因的表达和功能分析[J]. 遗传, 2013, 35(1):93-100.
[32] Zhang Z B, Jin Y J, Wan H H, et al. Genome-wide identification and expression analysis of the MADS-box transcription factor family in Camellia sinensis[J]. Journal of Applied Genetics, 2021, 62(10): 249-264.
[33] Hou D, Li L, Ma T F, et al. The SOC1-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii[J]. Horticulture Research, 2021, 8: 133-146. doi: 10.1038/s41438-021-00557-4
[34] 吴 琼. 小麦TaSOC1-like基因的分离及功能研究[D]. 泰安: 山东农业大学, 2019.
[35] Gogoi M, Borchetia S, Bandyopadhyay T. Computational identification and analysis of MADS box genes inCamellia sinensis[J]. Bioinformation, 2015, 11(3): 115-121. doi: 10.6026/97320630011115
[36] Jaudal M, Zhang L L, Che C, et al. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago[J]. Journal of Experimental Botany, 2018, 69(20): 4867-4880. doi: 10.1093/jxb/ery284
[37] Ning G G, Yan X, Chen H, et al. Genetic manipulation of Soc1-like genes promotes photosynthesis in flowers and leaves and enhances plant tolerance to high temperature[J]. Plant Biotechnology Journal, 2021, 19(1): 8-10. doi: 10.1111/pbi.13432
[38] Ma J, Chen X, Song Y, et al. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine[J]. Plant Physiology, 2021;doi: 10.1093/plphys/kiab250.
[39] 侯传明, 郑雅文, 王正加, 等. 山核桃MADS-like基因的克隆与分析[J]. 浙江农林大学学报, 2015, 32(1):33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
[40] 李玉舒, 杨炜茹, 程堂仁, 等. 梅花PmSOC1-like基因的克隆与表达分析[J]. 华北农学报, 2016, 31(5):78-85. doi: 10.7668/hbnxb.2016.05.012