[1] AZEEZ J O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria[J]. Journal of Forestry Research, 2019, 30(5): 1903-1911. doi: 10.1007/s11676-018-0753-z
[2] 田慧敏, 刘彦春, 刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应[J]. 生态学报, 2022, 42(10):3889-3896.
[3] 苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展[J]. 水土保持研究, 2022, 29(2):406-413.
[4] 卫芯宇, 倪祥银, 谌 亚, 等. 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响[J]. 生态学报, 2021, 41(20):8266-8275.
[5] DAVID B, ALBERTO R, ANTONIO G, et al. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe[J]. Journal of Mountain Science, 2016, 13(12): 2155-2169. doi: 10.1007/s11629-015-3773-6
[6] 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征[J]. 生态学报, 2022, 42(3):935-946.
[7] 崔高阳, 曹 扬, 陈云明. 陕西省森林各生态系统组分氮磷化学计量特征[J]. 植物生态学报, 2015, 39(12):1146-1155.
[8] 孙思怡, 卢胜旭, 陆宇明, 等. 杉木林下套种阔叶树对土壤生态酶活性及其化学计量比的影响[J]. 林业科学研究, 2021, 34(1):106-113.
[9] 郝清玉, 杨 彬, 周玉萍. 木麻黄凋落物现存量的数量特征及影响因素[J]. 森林与环境学报, 2020, 40(4):356-362.
[10] 秦倩倩, 王海燕, 李 翔, 等. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素[J]. 生态学报, 2019, 39(12):4519-4529.
[11] ROSTAMIZAD P, HOSSEINI V, SAMANI K M. Effects of Persian turpentine tree litter and slope aspect on soil chemical properties in a Zagros forest, Iran[J]. Journal of Forestry Research, 2020, 31(5): 1583-1588. doi: 10.1007/s11676-019-00950-9
[12] MARIA M, WOLFGANG W, JÖRG S, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J]. Ecology, 2012, 93(4): 770-782. doi: 10.1890/11-0721.1
[13] PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(5810): 361-364. doi: 10.1126/science.1134853
[14] ZHOU G Y, XU S, CIAIS P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 2019, 6(4): 746-757. doi: 10.1093/nsr/nwz045
[15] 赵 畅, 龙 健, 李 娟, 等. 茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征[J]. 生态学杂志, 2018, 37(2):295-303.
[16] 赵金龙, 王泺鑫, 韩海荣, 等. 森林生态系统服务功能价值评估研究进展与趋势[J]. 生态学杂志, 2013, 32(8):2229-2237.
[17] 王 璐, 王海燕, 何丽鸿, 等. 基于GIS的土壤肥力质量综合评价——以天然云冷杉针阔混交林为例[J]. 土壤通报, 2016, 47(5):1223-1230.
[18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 14-111.
[19] 李 翔, 王海燕, 秦倩倩, 等. 采伐对天然云冷杉针阔混交林半分解层凋落物现存量、含水率及林分郁闭度空间异质性的影响[J]. 林业科学研究, 2018, 31(6):114-120.
[20] GE J L, XIE Z Q. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species[J]. Plant Ecology, 2017, 218(9): 1063-1076. doi: 10.1007/s11258-017-0752-8
[21] 张乃木, 王克勤, 宋娅丽, 等. 滇中亚高山森林林下植被和凋落物生态化学计量特征[J]. 林业科学研究, 2020, 33(4):127-134.
[22] BAI X J, WANG B R, AN S S, et al. Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China[J]. Catena, 2019, 183(1): 104186.
[23] 秦江环, 张春雨, 赵秀海. 温带针阔混交林基于植物-土壤反馈的Janzen-Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631.
[24] 刘 璐, 葛结林, 舒化伟, 等. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6):482-489.
[25] VITOUSEK P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119(4): 553-572. doi: 10.1086/283931
[26] CHAPMAN K, WHITTAKER J B, HEAL O W. Metabolic and faunal activity in litters of tree mixtures compared with pure stands[J]. Agriculture, Ecosystems and Environment, 1988, 24(1-3): 33-40. doi: 10.1016/0167-8809(88)90054-0
[27] HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[28] 杜雨潭, 陈金磊, 李雷达, 等. 亚热带不同植被恢复林地凋落物层碳、氮、磷化学计量特征[J]. 中南林业科技大学学报, 2020, 40(2):108-119.
[29] 李汶倬, 高 扬, 杨 柳, 等. 东北地区落叶松新鲜针叶凋落物碳氮磷化学计量特征对环境变化的响应[J]. 生态学杂志, 2020, 39(9):2832-2841.
[30] TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C: N: P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151. doi: 10.1007/s10533-009-9382-0
[31] 倪惠菁, 苏文会, 范少辉, 等. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3):863-872.
[32] QI K B, PANG X Y, YANG B. Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations[J]. PeerJ, 2020, 8: e9702. doi: 10.7717/peerj.9702
[33] 秦 娟, 孔海燕, 刘 华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68-76,82.
[34] HÄTTENSCHWILER S, JØRGENSEN H B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest[J]. Journal of Ecology, 2010, 98(4): 754-763. doi: 10.1111/j.1365-2745.2010.01671.x
[35] TONG R, ZHOU BZ, JIANG LN, et al. Leaf litter carbon, nitrogen and phosphorus stoichiometry of Chinese fir (Cunninghamia lanceolata) across China[J]. Global Ecology and Conservation, 2021, 27: e01542. doi: 10.1016/j.gecco.2021.e01542
[36] THIESSEN S, GLEIXNER G, WUTZLER T, et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: An incubation study[J]. Soil Biology and Biochemistry, 2013, 57: 739-748. doi: 10.1016/j.soilbio.2012.10.029
[37] YU G G, ZHAO H B, CHEN J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Science of the Total Environment, 2020, 737: 139708. doi: 10.1016/j.scitotenv.2020.139708