[1] 罗 帅, 钟秋平, 葛晓宁, 等. 不同氮、磷、钾施肥配比对油茶花芽分化的影响[J]. 林业科学研究, 2019, 32(2):131-138. doi: 10.13275/j.cnki.lykxyj.2019.02.019
[2] 江 南, 谭晓风, 张 琳, 等. 基于RNA-Seq的油茶种子α-亚麻酸代谢途径及相关基因分析[J]. 林业科学, 2014, 50(8):69-75.
[3] 王汉中, 殷 艳. 我国油料产业形势分析与发展对策建议[J]. 中国油料作物学报, 2014, 36(3):414-421. doi: 10.7505/j.issn.1007-9084.2014.03.020
[4] 秦声远, 戎 俊, 张文驹, 等. 油茶栽培历史与长江流域油茶遗传资源[J]. 生物多样性, 2018, 26(4):61-72. doi: 10.17520/biods.2017254
[5] Martin M H, Marschner H. Mineral nutrition of higher plants[J]. Journal of Ecology, 1988, 76(4): 1250.
[6] Lambers H, Finnegan P M, Laliberte E, et al. Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?[J]. Plant Physiology, 2011, 156(3): 58-66.
[7] Stewart J D, Abidine A E, Bernier P Y. Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought[J]. Tree Physiology, 1994, 15(1): 57-64.
[8] 龚丽娜, 胡冬南, 张文元, 等. 土壤养分状况系统研究法在油茶林地养分管理上的应用[J]. 经济林研究, 2015, 107(4):71-75.
[9] 陈家法, 陈隆升, 涂 佳, 等. 长期施肥对油茶林产果量及土壤地力可持续性的影响[J]. 中南林业科技大学学报, 2017, 37(7):59-65. doi: 10.14067/j.cnki.1673-923x.2017.07.009
[10] 罗汉东. 不同磷水平施肥对油茶生长及土壤环境动态影响[D]. 南昌: 江西农业大学, 2017.
[11] Smith S E, Read D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273-281.
[12] Xie X, Weng B, Cai B, et al. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil[J]. Applied Soil Ecology, 2014, 75: 162-171. doi: 10.1016/j.apsoil.2013.11.009
[13] Rakshit A, Bhadoria P S. Influence of arbuscular mycorrhizal hyphal length on simulation of P influx with the mechanistic model[J]. African Journal of Microbiology Research, 2009, 3(1): 1-4.
[14] Yao Q, Wang L R, Zhu H H, et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf. ) seedlings[J]. Scientia Horticulturae, 2009, 121(4): 458-461. doi: 10.1016/j.scienta.2009.03.013
[15] Smith S E, Jakobsen S I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511-524. doi: 10.1111/j.1469-8137.2004.01039.x
[16] 韦莉莉, 卢昌熠, 丁 晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14):4233-4243.
[17] 金 鑫, 曾新颖, 齐昌国, 等. 供磷水平对玉米丛枝菌根侵染及其对异质养分吸收的影响[J]. 植物营养与肥料学报, 2018, 118(1):167-173.
[18] Schnepf A, Jones D, Roose T. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design[J]. Bull Math Biol, 2011, 73(9): 2175-2200. doi: 10.1007/s11538-010-9617-1
[19] Duan T, Facelli E, Smith S E, et al. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil[J]. Soil Biol Biochem, 2011, 43(3): 571-578. doi: 10.1016/j.soilbio.2010.11.024
[20] Balzergue C, Puech-Pagès V, Bécard G, et al. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events[J]. Journal of Experimental Botany, 2011, 62(3): 1049-1060. doi: 10.1093/jxb/erq335
[21] Nazeri N K, Lambers H, Tibbett M, et al. Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate[J]. Plant & Soil, 2013, 373(12): 699-710.
[22] 林宇岚, 李正昀, 张林平, 等. 有机磷和AM真菌对油茶生长、根系形态和光合作用的影响[J]. 经济林研究, 2021, 39(1):121-128 + 210. doi: 10.14067/j.cnki.1003-8981.2021.01.014
[23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
[24] 雷宏军, 刘 鑫, 朱端卫. 酸性土壤磷分级新方法建立与生物学评价[J]. 土壤学报, 2007, 44(5):860-866. doi: 10.3321/j.issn:0564-3929.2007.05.013
[25] 周俊琴, 谭晓风, 袁 军, 等. 油茶Pht1;1基因克隆及其表达分析[J]. 植物遗传资源学报, 2013, 14(3):512-517.
[26] 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6):10-20. doi: 10.13870/j.cnki.stbcxb.2019.06.002
[27] Cavagnaro T R. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas[J]. Soil Biology and Biochemistry, 2014, 78: 38-44. doi: 10.1016/j.soilbio.2014.07.007
[28] 刘春艳, 吴强盛, 邹英宁. AM真菌对枳吸收磷和分泌磷酸酶的影响[J]. 菌物学报, 2017, 36(7):942-949. doi: 10.13346/j.mycosystema.170069
[29] 孙艳梅, 张前兵, 苗晓茸, 等. 解磷细菌和丛枝菌根真菌对紫花苜蓿生产性能及地下生物量的影响[J]. 中国农业科学, 2019, 52(13):2230-2242. doi: 10.3864/j.issn.0578-1752.2019.13.004
[30] 李 芳, 郝志鹏, 陈保冬. 菌根植物适应低磷胁迫的分子机制[J]. 植物营养与肥料学报, 2019, 25(11):1989-1997. doi: 10.11674/zwyf.18490
[31] Xiang W, Huang M, Li X. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutr. Fert. Sci, 2004, 10: 663-670.
[32] 钟 雄, 王 硕, 包 立, 等. 间作作物菌根菌丝对红壤磷形态的影响[J]. 中国生态农业学报, 2018, 26(11):1624-1633.
[33] 张 丽, 柳 勇, 谷林静, 等. 外源磷与AMF对间作玉米种植红壤无机磷形态的影响[J]. 中国土壤与肥料, 2016(1):26-33. doi: 10.11838/sfsc.20160105
[34] 张宇亭, 朱 敏, 线岩相洼, 等. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响[J]. 生态学报, 2012, 32(22):11.
[35] 刘润进. 菌根学[M]. 北京: 科学出版社, 2007.
[36] 舒波. 丛枝菌根真菌促进枳(Poncirus trifoliata L. Raf)磷吸收效应及其机理研究[D]. 武汉: 华中农业大学, 2013.
[37] 刘芳. 丛枝菌根真菌诱导ZmPHT1;9促进玉米对磷吸收的分子机制研究[D]. 合肥: 安徽农业大学, 2017.
[38] 周德贵, 周少川, 王重荣, 等. 植物磷利用研究在水稻分子设计育种中的应用[J]. 分子植物育种, 2018, 16(16):236-246.