[1] 巫仁霞. 梵净山生态系统多样性全球对比分析与世界遗产价值研究[D]. 贵阳: 贵州师范大学, 2017.
[2] 朱佳运. 梵净山植物多样性全球对比分析与世界遗产价值[D]. 贵阳: 贵州师范大学, 2017.
[3] 李相楹, 张维勇, 刘 峰, 等. 不同海拔高度下梵净山土壤碳、氮、磷分布特征[J]. 水土保持研究, 2016, 23(3):19-24.
[4] 张明明, 杨朝辉, 王 丞, 等. 贵州梵净山国家级自然保护区鸟兽红外相机监测[J]. 生物多样性, 2019, 27(7):813-818. doi: 10.17520/biods.2019131
[5] 李晓笑, 王清春, 崔国发, 等. 濒危植物梵净山冷杉野生种群结构及动态特征[J]. 西北植物学报, 2011, 31(7):1479-1486.
[6] 袁 腾, 陶光耀, 江 龙. 梵净山4种林型的土壤丛枝菌根真菌多样性[J]. 东北林业大学学报, 2018, 46(3):83-86.
[7] 尚 昆, 石 磊, 李海波, 等. 梵净山不同海拔丛枝菌根真菌多样性[J]. 东北林业大学学报, 2020, 48(2):76-80.
[8] VAN DER HEIJDEN M G, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396(6706): 69-72. doi: 10.1038/23932
[9] TRESEDER K K, LENNON J T. Fungal traits that drive ecosystem dynamics on land[J]. Microbiology and Molecular Biology Reviews, 2015, 79(2): 243-262. doi: 10.1128/MMBR.00001-15
[10] SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. New York: Academic Press, 2008.
[11] TEDERSOO L, BAHRAM M, PÕLME S, et al. Global diversity and geography of soil fungi[J]. Science, 2014, 346(6213): 1256688. doi: 10.1126/science.1256688
[12] 林宇岚, 李正昀, 吴 斐, 等. 不同品种油茶根际丛枝菌根真菌群落结构特征[J]. 林业科学研究, 2020, 33(5):163-169.
[13] 梁明月, 苏以荣, 何寻阳, 等. 岩溶区典型灌丛植物根系丛枝菌根真菌群落结构解析[J]. 环境科学, 2018, 39(12):5657-5664.
[14] GUO Y Q, HOU L J, ZHANG Z Y, et al. Soil microbial diversity during 30 years of grassland restoration on the Loess Plateau, China: Tight linkages with plant diversity[J]. Land Degradation and Development, 2019, 30(10): 1172-1182. doi: 10.1002/ldr.3300
[15] LIU S E, WANG H, TIAN P, et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems[J]. Soil Biology and Biochemistry, 2020, 144: 107763. doi: 10.1016/j.soilbio.2020.107763
[16] SHENG Y Y, CONG W, YANG L S, et al. Forest soil fungal community elevational distribution pattern and their ecological assembly processes[J]. Frontiers in Microbiology, 2019, 10: 02226. doi: 10.3389/fmicb.2019.02226
[17] COTTAM G, CURTIS J T. The use of distance measures in phytosociological sampling[J]. Ecology, 1956, 37(3): 451-460. doi: 10.2307/1930167
[18] BELL C, CARRILLO Y, BOOT C M, et al. Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level?[J]. New Phytologist, 2014, 201(2): 505-517. doi: 10.1111/nph.12531
[19] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs, 2002, 72(2): 293-309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
[20] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000.
[21] CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. doi: 10.1038/nmeth.3869
[22] KÕLJALG U, NILSSON R H, ABARENKOV K, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology, 2013, 22(21): 5271-5277. doi: 10.1111/mec.12481
[23] NGUYEN N H, SONG Z, BATES S T, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248. doi: 10.1016/j.funeco.2015.06.006
[24] OSONO T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition[J]. Ecological Research, 2020, 35(1): 30-43. doi: 10.1111/1440-1703.12063
[25] PURAHONG W, WUBET T, LENTENDU G, et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment[J]. Frontiers in Microbiology, 2018, 9: 02120. doi: 10.3389/fmicb.2018.02120
[26] ZHANG H Y, LÜ X T, HARTMANN H, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales[J]. Global Ecology and Biogeography, 2018, 27(7): 875-885. doi: 10.1111/geb.12738
[27] ADAMCZYK B, AHVENAINEN A, SIETIÖ O-M, et al. The contribution of ericoid plants to soil nitrogen chemistry and organic matter decomposition in boreal forest soil[J]. Soil Biology and Biochemistry, 2016, 103: 394-404. doi: 10.1016/j.soilbio.2016.09.016
[28] PEROTTO S, DAGHINO S, MARTINO E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis?[J]. New Phytologist, 2018, 220(4): 1141-1147. doi: 10.1111/nph.15218
[29] HORTAL S, PLETT K L, PLETT J M, et al. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi[J]. The ISME Journal, 2017, 11(12): 2666-2676. doi: 10.1038/ismej.2017.116
[30] HACK C M, PORTA M, SCHÄUFELE R, et al. Arbuscular mycorrhiza mediated effects on growth, mineral nutrition and biological nitrogen fixation of Melilotus alba Med. in a subtropical grassland soil[J]. Applied Soil Ecology, 2019, 134: 38-44. doi: 10.1016/j.apsoil.2018.10.008
[31] JOHNSON N C, WILSON G W, BOWKER M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences, 2010, 107(5): 2093-2098. doi: 10.1073/pnas.0906710107
[32] HAN W J, WANG G M, LIU J L, et al. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests[J]. Applied Soil Ecology, 2021, 158: 103813. doi: 10.1016/j.apsoil.2020.103813
[33] PRADA-SALCEDO L D, GOLDMANN K, HEINTZ-BUSCHART A, et al. Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests[J]. Molecular Ecology, 2021, 30(2): 572-591. doi: 10.1111/mec.15749
[34] SWEENEY C J, DE VRIES F T, VAN DONGEN B E, et al. Root traits explain rhizosphere fungal community composition among temperate grassland plant species[J]. New Phytologist, 2021, 229(3): 1492-1507. doi: 10.1111/nph.16976
[35] BEVER J D. Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts[J]. New Phytologist, 2015, 205(4): 1503-1514. doi: 10.1111/nph.13239
[36] VASCO-PALACIOS A M, BAHRAM M, BOEKHOUT T, et al. Carbon content and pH as important drivers of fungal community structure in three Amazon forests[J]. Plant and Soil, 2020, 450: 111-131. doi: 10.1007/s11104-019-04218-3
[37] VAN SUNDERT K, RADUJKOVIĆ D, COOLS N, et al. Towards comparable assessment of the soil nutrient status across scale-Review and development of nutrient metrics[J]. Global Change Biology, 2020, 26(2): 392-409. doi: 10.1111/gcb.14802
[38] DONG H Y, GE J F, SUN K, et al. Change in root-associated fungal communities affects soil enzymatic activities during Pinus massoniana forest development in subtropical China[J]. Forest Ecology and Management, 2021, 482: 118817. doi: 10.1016/j.foreco.2020.118817