[1] 何 洁, 刘鸿先, 王以柔, 等. 低温与植物的光合作用[J]. 植物生理学通讯, 1986, 2(3):1-6.
[2] SENEVIRATNE S I, DONAT M G, MUELLER B, et al. No pause in the increase of hot temperature extremes[J]. Nature Climate Change, 2014, 4(3): 161-163. doi: 10.1038/nclimate2145
[3] 王 毅, 方秀娟, 徐 欣, 等. 黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响[J]. 园艺学报, 1995, 22(3):299-300.
[4] POWLES S B, BERRY J A, BJӦRKMAN O. Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling-sensitive plants[J]. Plant, Cell & Environment, 1983, 6(2): 117-123.
[5] SAGE R F, STATA M. Photosynthetic diversity meets biodiversity: the C4 plant example[J]. Journal of Plant Physiology, 2015, 172: 104-119. doi: 10.1016/j.jplph.2014.07.024
[6] ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in plant science, 2001, 6(1): 36-42. doi: 10.1016/S1360-1385(00)01808-2
[7] 邵怡若, 许建新, 薛 立, 等. 低温胁迫时间对4种幼苗生理生化及光合特性的影响[J]. 生态学报, 2013, 33(14):4237-4247.
[8] 郭菊兰, 朱耀军, 武高洁, 等. 海南省清澜港红树林湿地健康评价[J]. 林业科学, 2015, 51(10):17-25.
[9] KAO W Y, SHIH C N, TSAI T T. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina[J]. Tree physiology, 2004, 24(7): 859-864. doi: 10.1093/treephys/24.7.859
[10] LIU W, ZHENG C, CHEN J, et al. Cold acclimation improves photosynthesis by regulating the ascorbate-glutathione cycle in chloroplasts of Kandelia obovata[J]. Journal of Forestry Research, 2019, 30(3): 755-765. doi: 10.1007/s11676-018-0791-6
[11] TOMLINSON P B. The botany of mangroves[M]. Cambridge: Cambridge University Press, 2016.
[12] QUISTHOUDT K, SCHMITZ N, RANDIN C F, et al. Temperature variation among mangrove latitudinal range limits worldwide[J]. Trees, 2012, 26(6): 1919-1931. doi: 10.1007/s00468-012-0760-1
[13] JIANG C D, GAO H Y, ZOU Q. Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves[J]. Photosynthetica, 2003, 41(2): 267-271.
[14] 段爱国, 保尔江, 张建国, 等. 华山松不同叶龄、部位针叶叶绿素荧光参数的动态变化规律[J]. 北京林业大学学报, 2008, 30(5):26-32. doi: 10.3321/j.issn:1000-1522.2008.05.005
[15] TJUS S E, MØLLER B L, SCHELLER H V. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures[J]. Plant Physiology, 1998, 116(2): 755-764. doi: 10.1104/pp.116.2.755
[16] 郭菊兰, 朱耀军, 文菀玉, 等. 秋茄幼苗光合特性对寒害的响应[J]. 林业科学研究, 2018, 31(6):63-68.
[17] ARO E M, HUNDAL T, CARLBERG I, et al. In vitro studies on light-induced inhibition of photosystem II and D1-protein degradation at low temperatures[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1990, 1019(3): 269-275. doi: 10.1016/0005-2728(90)90204-H
[18] KRAMER D M, JOHNSON G, KIIRATS O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis research, 2004, 79(2): 209-218. doi: 10.1023/B:PRES.0000015391.99477.0d
[19] 逯久幸, 苗润田, 王司琦, 等. 低温胁迫下秋菊叶片光系统特性分析[J]. 植物生理学报, 2022, 58(2):425-434.
[20] SINGH S, CHAUDHARY H K, SETHI G S. Distribution and allelic expressivity of genes for hybrid necrosis in some elite winter and spring wheat ecotypes[J]. Euphytica, 2000, 112(1): 95-100. doi: 10.1023/A:1003824910041
[21] 李治鑫, 李 鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5):415-422. doi: 10.3969/j.issn.1000-369X.2015.05.003
[22] SONOIKE K. Photoinhibition of photosystem I[J]. Physiologia Plantarum, 2011, 142(1): 56-64. doi: 10.1111/j.1399-3054.2010.01437.x
[23] 肖 飞, 杨延龙, 王娅婷, 等. 棉花花铃期低温对叶片PSI和PSII光抑制的影响[J]. 作物学报, 2017, 43(9):1401-1409.
[24] 黄 伟. 环式电子传递在植物抗环境胁迫过程中的重要作用[D]. 合肥: 中国科学技术大学, 2012.
[25] 郭 燕, 沈雅飞, 程瑞梅, 等. 水淹持续胁迫对湿地松光合特性及生理生化的影响[J]. 林业科学研究, 2021, 34(2):141-148.
[26] GONG X, CHAO L, ZHOU M, et al. Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress[J]. Plant and Soil, 2011, 340(1): 443-452.
[27] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. doi: 10.1146/annurev.pp.33.060182.001533
[28] CARMO-SILVA A E, SALVUCCI M E. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress[J]. Planta, 2012, 236(5): 1433-1445. doi: 10.1007/s00425-012-1691-1
[29] TEZARA W, MITCHELL V J, DRISOLL S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 401(6756): 914-917. doi: 10.1038/44842
[30] 黄 绢, 陈 存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15. doi: 10.11707/j.1001-7488.20170502
[31] 倪 霞, 曹永慧, 周本智, 等. 干旱处理对毛竹光响应的影响: 基于4种模型比较分析[J]. 林业科学研究, 2017, 30(3):465-471.
[32] LIN G H, STERNBERG L S L. Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.)[J]. Functional Plant Biology, 1992, 19(5): 509-517. doi: 10.1071/PP9920509
[33] WONG S C, COWAN I R, FARQUHAR G D. Stomatal conductance correlates with photosynthetic capacity[J]. Nature, 1979, 282(5737): 424-426. doi: 10.1038/282424a0
[34] ÖGREN E. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components[J]. Planta, 1991, 184(4): 538-544.