[1] Lopez-Nieves S, Yang Y, Timoneda A, et al. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales[J]. New Phytologist, 2018, 217(2): 896-908. doi: 10.1111/nph.14822
[2] Jaiswal P S, Kaur N, Randhawa G S. Identification of reference genes for qRT-PCR gene expression studies during seed development and under abiotic stresses in Cyamopsis tetragonoloba[J]. Crop Science, 2019, 59(1): 252-265. doi: 10.2135/cropsci2018.05.0313
[3] Jia Y, Liu S C, Zhao J, et al. Reference gene selection and validation by qRT-PCR during flower development and in different organs of Primula forbesii[J]. The Journal of Horticultural Science and Biotechnology, 2020, 95(3): 383-394. doi: 10.1080/14620316.2019.1681909
[4] Li C, Xu J, Deng Y, et al. Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait. ) gene expression under different experimental conditions[J]. PLoS ONE, 2019, 14(11): e0224798. doi: 10.1371/journal.pone.0224798
[5] Xiao F, Zheng Y F, Chen J L, et al. Selection and validation of reference genes in all-red Amaranth (Amaranthus tricolor L. ) seedlings under different culture conditions[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(5): 1-10.
[6] Chen G S, Li J T, Liu Y, et al. Selection and validation of reference genes for quantitative RT-PCR analysis in Castanea mollissima[J]. Plant Physiology Journal, 2019, 55(3): 158-166.
[7] Yang C L, Yuan X Y, Zhang J, et al. Comprehensive transcriptome analysis of reference genes for fruit development of Euscaphis konishii[J]. PeerJ, 2020, 8: e8474. doi: 10.7717/peerj.8474
[8] Hu X W, Zhang L J, Nan S Z, et al. Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data[J]. Gene, 2018, 657: 39-49. doi: 10.1016/j.gene.2018.03.004
[9] 齐香玉, 陈双双, 冯 景, 等. 茉莉花实时荧光定量PCR内参基因的筛选与验证[J]. 华北农学报, 2020, 35(6):22-30. doi: 10.7668/hbnxb.20191401
[10] Li L, Li N, Fang H, et al. Selection and validation of reference genes for normalisation of gene expression in Glehnia littoralis[J]. Scientific Reports, 2020, 10(1): 7374. doi: 10.1038/s41598-020-63917-5
[11] Tang F, Chu L, Shu W, et al. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar[J]. Plant Methods, 2019, 15(1): 35. doi: 10.1186/s13007-019-0420-1
[12] 苏晓娟, 樊保国, 袁丽钗, 等. 实时荧光定量 PCR分析中毛果杨内参基因的筛选和验证[J]. 植物学报, 2013, 48(5):507-518.
[13] 储文渊, 王玉娇, 朱东悦, 等. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10):70-79. doi: 10.11707/j.1001-7488.20171008
[14] Li T T, Yuan W G, Qiu S, et al. Selection of reference genes for gene expression analysis in Liriodendron hybrids' somatic embryogenesis and germinative tissues[J]. Scientific Reports, 2021, 11(1): 4957-4957. doi: 10.1038/s41598-021-84518-w
[15] Wang N, Zhu T Q, Lu N, et al. Quantitative phosphoproteomic and physiological analyses provide insights into the formation of the variegated leaf in Catalpa fargesii[J]. International Journal of Molecular Sciences, 2019, 20(8): 1895. doi: 10.3390/ijms20081895
[16] Qi C H, Jang H, Zhao X Y, et al. The characterization, authentication, and gene expression pattern of the MdCER Family in Malus domestica[J]. Horticultural Plant Journal, 2019, 5(1): 1-9. doi: 10.1016/j.hpj.2018.11.003
[17] Jing D L, Xia Y, Chen F, et al. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant[J]. Plant Science, 2015, 231: 40-51. doi: 10.1016/j.plantsci.2014.11.004
[18] Vandesompele J, Preter K D, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): 00341.
[19] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-Based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. doi: 10.1023/B:BILE.0000019559.84305.47
[20] Dong Z, Chen P, Zhang N, et al. Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus)[J]. Gene Reports, 2019, 14: 94-99. doi: 10.1016/j.genrep.2018.11.008
[21] Maldonado-Taipe N, Patirange DSR, Schmöckel SM, et al. Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa[J]. PLoS ONE, 2021, 16(3): e0233821. doi: 10.1371/journal.pone.0233821
[22] Cao S H, Hao P P, Shu W S, et al. Phylogenetic and expression analyses of with-no-lysine kinase genes reveal novel gene family diversity in fruit trees[J]. Horticultural Plant Journal, 2019, 5(2): 47-58. doi: 10.1016/j.hpj.2019.01.006
[23] Knopkiewicz M, Wojtaszek P. Validation of reference genes for gene expression analysis using quantitative polymerase chain reaction in pea lines (Pisum sativum) with different lodging susceptibility[J]. Annals of Applied Biology, 2019, 174(1): 86-91. doi: 10.1111/aab.12475
[24] Chen H, Hu B, Zhao L, et al. Differential expression analysis of reference genes in Pineapple (Ananas comosus L. ) during reproductive development and response to abiotic stress, Hormonal Stimuli[J]. Tropical Plant Biology, 2019, 12(2): 67-77. doi: 10.1007/s12042-019-09218-2
[25] 吕运舟, 董筱昀, 黄利斌. 黄山栾树实时荧光定量PCR内参基因的筛选[J]. 分子植物育种印刷版, 2019, 17(2):553-560.
[26] 苏西娅, 石元豹, 杨晓明, 等. 银杏实时荧光定量PCR分析中内参基因的选择与验证[J]. 植物生理学报, 2019, 55(6):875-882.
[27] 许丹芸, 张辉菊, 刘基柱, 等. 肉桂和大叶清化桂内参基因的筛选和验证[J]. 中国实验方剂学杂志, 2021, 27(4):137-144.
[28] Chen M D, Wang B, Li Y P, et al. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions[J]. Scientific Reports, 2021, 11(1): 3161. doi: 10.1038/s41598-021-81524-w
[29] Yu Y T, Zhang G, Chen Y K, et al. Selection of Reference Genes for qPCR Analyses of Gene gene expression in ramie leaves and roots across eleven abiotic/biotic treatments[J]. Scientific Reports, 2019, 9(1): 20004. doi: 10.1038/s41598-019-56640-3
[30] Zhang K K, Fan W, Chen D F, et al. Selection and validation of reference genes for quantitative gene expression normalization in Taxus spp[J]. Scientific Reports, 2020, 10(1): 22205. doi: 10.1038/s41598-020-79213-1
[31] Qu R, Miao Y, Cui Y, et al. Selection of reference genes for the quantitative real-time PCR normalization of gene expression in Isatis indigotica fortune[J]. Physiology and Molecular Biology of Plants, 2019, 20(1): 9.
[32] Tajti J, Pál M, Janda T. Validation of Reference genes for studying different abiotic stresses in Oat (Avena sativa L. ) by RT-qPCR[J]. Plants, 2021, 10: 1272. doi: 10.3390/plants10071272
[33] Yang Z, Zhang R, Zhou Z. Identification and validation of reference genes for gene expression analysis in Schima superba[J]. Genes, 2021, 12(5): 732. doi: 10.3390/genes12050732
[34] Linardić M, Braybrook SA. Identification and selection of optimal reference genes for qPCR-based gene expression analysis in Fucus distichus under various abiotic stresses[J]. PLoS ONE, 2021, 16(4): e0233249. doi: 10.1371/journal.pone.0233249
[35] Lv Y, Li Y, Liu X, et al. Identification of Ginger (Zingiber officinale Roscoe) reference genes for gene expression analysis[J]. Frontiers in Genetics, 2020, 11: 586098. doi: 10.3389/fgene.2020.586098
[36] Chen M L, Wang Q, Li Y, et al. Candidate reference genes for quantitative gene expression analysis in Lagerstroemia indica[J]. Molecular Biology Reports, 2021, 48: 1677-1685. doi: 10.1007/s11033-021-06209-z
[37] 陈凌艳, 谢德金, 荣俊冬, 等. 花叶唐竹4种叶色表型qRT-PCR内参基因筛选[J]. 分子植物育种, 2019(14):4592-4599.
[38] Yu Z C, Zhang P, Lin W, et al. Sequencing of anthocyanin synthesis-related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species[J]. Gene, 2019, 716(C): 144024.
[39] 王倩颖, 常鹏杰, 申亚梅, 等. 景宁木兰热胁迫下实时荧光定量PCR内参基因的筛选[J]. 浙江农林大学学报, 2019, 36(5):935-942.
[40] 陈国松, 李靖同, 刘 阳, 等. 板栗实时定量PCR内参基因的筛选与验证[J]. 植物生理学报, 2019, 55(3):378-386.