[1] 牛 艳, 闫 伟, 陈立红, 等. 阿尔山国家森林公园自然保护区杨树根际土壤固氮菌多样性及特性研究[J]. 西北农林科技大学学报:自然科学版, 2018, 46(3):79-86.
[2] 刘彩霞, 赵京京, 焦如珍. 杉木林土壤中固氮功能细菌的生长特性研究[J]. 林业科学研究, 2018, 31(4):98-103.
[3] 张 武, 杨 琳, 王紫娟. 生物固氮的研究进展及发展趋势[J]. 云南农业大学学报:自然科学, 2015, 30(5):810-821.
[4] 冯晓敏, 杨 永, 任长忠, 等. 燕麦/大豆和燕麦/花生间作对根际土壤固氮细菌多样性与群落结构的影响[J]. 中国农业大学学报, 2016, 21(1):22-32.
[5] Orr C H, James A, Leifert C, et al. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils[J]. Applied & Environmental Microbiology, 2011, 77(3): 911-919.
[6] Mirza B S, Potisap C, Nusslein K, et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest[J]. Applied & Environmental Microbiology, 2014, 80(1): 281.
[7] Wang J, Zhang D, Zhang L, et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season[J]. Agriculture, Ecosystems & Environment, 2016, 216: 116-124.
[8] 刘 璐, 何寻阳, 杜 虎, 等. 喀斯特土壤固氮微生物群落与植被/土壤的关系[J]. 生态学报, 2017, 37(12):4037-4044.
[9] Templer P H. Direct and indirect effects of tree species on forest nitrogen retention in the Catskill Mountains [D].New York Cornell University. 2001
[10] 王 磊, 梁艺凡, 杨军钱, 等. 亚热带主要造林树种土壤氮保留及相关功能的微生物特征[J]. 林业科学, 2020, 56(8):27-37.
[11] Reed S C, Townsend A R, Cleveland C C, et al. Microbial community shifts influence patterns in tropical forest nitrogen fixation[J]. Oecologia, 2010, 164(2): 521-531.
[12] Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677): 1629-1633. doi: 10.1126/science.1094875
[13] Keeling A A, Cook J A, Wilcox A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost[J]. Bioresource Technology, 1998, 66(2): 89-9. doi: 10.1016/S0960-8524(98)00055-8
[14] 陈玉真, 王 峰, 吴志丹, 等. 林地转变为茶园对土壤团聚体及渗透性能的影响[J]. 水土保持学报, 2018, 32(5):134-139.
[15] Schmidt P A, Bálint M, Greshake B, et al. Illumina metabarcoding of a soil fungal community[J]. Soil Biology Biochemistry, 2013, 65: 128-132. doi: 10.1016/j.soilbio.2013.05.014
[16] 徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展[J]. 应用生态学报, 2017, 28(10):3440-3450.
[17] Kriiska K, Frey J, Asi E, et al. Variation in annual carbon fluxes affecting the SOC pool in hemiboreal coniferous forests in Estonia[J]. Forest Ecology and Management, 2018, 433: 419-430.
[18] 吕超群, 孙书存. 陆地生态系统碳密度格局研究概述[J]. 植物生态学报, 2004(5):692-703.
[19] Lützow M V, Kögel knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review[J]. European Journal of Soil Science, 2006, 57(4): 426-445. doi: 10.1111/j.1365-2389.2006.00809.x
[20] 聂浩亮, 薄慧娟, 张润哲, 等. 北京海坨山典型林分土壤有机碳含量及有机碳密度垂直分布特征[J]. 林业科学研究, 2020, 33(6):155-162.
[21] 赵 娜, 鲁绍伟, 李少宁, 等. 北京松山自然保护区典型植物群落物种多样性研究[J]. 西北植物学报, 2018, 38(11):2120-2128.
[22] 范雅倩, 安 菁, 梁 晨. 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征[J]. 北方园艺, 2021(1):81-86.
[23] Poly F, Ranjard L, Nazaret S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Applied & Environmental Microbiology, 2001, 67(5): 2255-2262.
[24] Gaby J C, Daniel H Buckley. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria[J]. Database, 2014, 2014: bau001.
[25] 鲍士旦. 土壤农化分析[M]. 北京, 中国农业出版社, 1999
[26] Szilagyi-Zecchin V, Ikeda A, Hungria M, et al. Identification and characterization of endophytic bacteria from corn (Zea mays L. ) roots with biotechnological potential in agriculture[J]. AMB Express, 2014, 4(1): 1-9. doi: 10.1186/2191-0855-4-1
[27] Akhtar N, D Goyal, Goyal A. Physico-chemical characteristics of leaf litter biomass to delineate the chemistries involved in biofuel production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 239-246. doi: 10.1016/j.jtice.2016.02.011
[28] Dilworth M J. Nitrogen-fixing Leguminous Symbioses[M]. Berlin. Springer Netherlands, 2007
[29] Ehrenfeld J G, Ravit B, Elgersma K. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources, 2005, 30(1): 75-115. doi: 10.1146/annurev.energy.30.050504.144212
[30] 王邵军, 阮宏华. 土壤生物对地上生物的反馈作用及其机制[J]. 生物多样性, 2008(4):407-416.
[31] 牛艳芳, 陈立红, 闫 伟. 贺兰山地区油松根际固氮菌的多样性研究[J]. 湖南林业科技, 2016, 43(5):17-21.
[32] 牛艳芳, 王飞宇, 陈立红, 等. 大青山油松根际固氮菌的多样性研究[J]. 安徽农业科学, 2016, 44(22):1-3.
[33] 张 路, 王 杰, 王向涛, 等. 不同恢复方式对退化高寒草甸土壤nifH和chiA微生物群落结构的影响[J]. 应用生态学报, 2021, 32(12):4349-4358.
[34] 吕雪丽, 赵永鹏, 林清火, 等. 我国典型森林土壤微生物驱动的氮代谢途径特征解析[J]. 环境科学, 2021, 42(10):4951-4958.
[35] 陆 梅. 纳帕海湿地退化对土壤微生物群落结构及多样性的影响[D]. 北京, 北京林业大学, 2018
[36] 王 媛. 生物炭配施植物根际促生菌(PGPR)对作物生长及土壤理化和生物性状的影响[D]. 泰安, 山东农业大学, 2019
[37] Berg A, Danielsson A, Bo H S. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss[J]. Plant & Soil, 2013, 362(1-2): 271-278.
[38] Grayston S J, Prescott C E. Microbial communities in forest floors under four tree species in coastal British Columbia[J]. Soil Biology Biochemistry, 2005, 37(6): 1157-1167. doi: 10.1016/j.soilbio.2004.11.014
[39] Ge X G, Zeng L X, Xiao W F, et al. Dynamic of leaf litter stoichiometric traits dynamic and its relations with decomposition rates under three forest types in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2014, 35(3): 779-787.
[40] Bray S R, Kitajima K, Mack M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate[J]. Soil Biology and Biochemistry, 2021, 49(1): 30-37.
[41] 张新平, 王襄平, 朱 彪, 等. 我国东北主要森林类型的凋落物产量及其影响因素[J]. 植物生态学报, 2008(5):1031-1040. doi: 10.3773/j.issn.1005-264x.2008.05.008
[42] Gao J, F Kang, Han H. Effect of litter quality on leaf-litter decomposition in the context of home-field advantage and non-additive effects in temperate forests in China[J]. Polish Journal of Environmental Studies, 2016, 25(5): 1911-1920. doi: 10.15244/pjoes/62822
[43] 沈秋兰, 何冬华, 徐秋芳, 等. 阔叶林改种毛竹(Phyllostachys pubescens)后土壤固氮细菌nifH基因多样性的变化[J]. 植物营养与肥料学报, 2016, 22(3):687-696.
[44] Nadine Herolda, Ingo Schöning, Jessica L, et al. Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany[J]. Applied Soil Ecology, 2014, 73: 41-50. doi: 10.1016/j.apsoil.2013.07.009
[45] Wu M, Qin H, Zhe C, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397-405. doi: 10.1007/s00374-010-0535-z
[46] Tai X S, Mao W L, Liu G X, et al. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China[J]. Biogeosciences, 2013, 10(8)
[47] Teng Q, Sun B, Fu X, et al. Analysis of nifH gene diversity in red soil amended with manure in Jiangxi, south China[J]. The Journal of Microbiology, 2009, 47(2): 135-141. doi: 10.1007/s12275-008-0184-1
[48] Zhang X, Wei L, Michael S, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes[J]. Plos One, 2013, 8(10): e76500. doi: 10.1371/journal.pone.0076500
[49] Long X, Chen C, Xu Z, et al. Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming[J]. Journal of Soils and Sediments, 2012, 12(7): 1124-1133. doi: 10.1007/s11368-012-0532-y
[50] 钱明媚, 肖永良, 彭文涛, 等. 免耕水稻土固定CO2自养微生物多样性[J]. 中国环境科学, 2015, 35(12):3754-3761.
[51] Ronald B M, Jane B E. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle[J]. J. Exp. Bot, 2008(7): 1525-1541.
[52] 张于光, 王慧敏, 李迪强, 等. 三江源地区不同植被土壤固氮微生物的群落结构研究[J]. 微生物学报, 2005(3):420-425.
[53] McGill B J, Etienne R S, John S, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letters, 2007, 10(10): 995-1015. doi: 10.1111/j.1461-0248.2007.01094.x