[1] Zhang Y, Zhang X, Che Z, et al. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection[J]. BMC Genetics, 2012, 13: 102.
[2] Cuevas H E, Prom L K. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan sorghum core collection[J]. BMC Genomics, 2020, 21: 88. doi: 10.1186/s12864-020-6489-0
[3] Wuyun T N, Hitomi A, Xu J, et al. Population structure of and conservation strategies for wild Pyrus ussuriensis Maxim. in China[J]. PloS One, 2015, 10(8): e0133686. doi: 10.1371/journal.pone.0133686
[4] Lv J, Li C, Zhou C, et al. Genetic diversity analysis of a breeding population of Eucalyptus cloeziana F. Muell. (Myrtaceae) and extraction of a core germplasm collection using microsatellite markers[J]. Industrial Crops and Products, 2020, 145: 112157. doi: 10.1016/j.indcrop.2020.112157
[5] 张洪亮, 李自超, 曹永生, 等. 表型水平上检验水稻核心种质的参数比较[J]. 作物学报, 2003, 29(2):252-257. doi: 10.3321/j.issn:0496-3490.2003.02.016
[6] 刘艳阳, 梅鸿献, 杜振伟, 等. 基于表型和SSR分子标记构建芝麻核心种质[J]. 中国农业科学, 2017, 50(13):2433-2441. doi: 10.3864/j.issn.0578-1752.2017.13.003
[7] 张爱民, 阳文龙, 方红曼, 等. 作物种质资源研究态势分析[J]. 植物遗传资源学报, 2018, 19(3):377-382.
[8] 徐 益, 张列梅, 郭艳春, 等. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11):1672-1681.
[9] Le Cunff L, Fournier-Level A, Laucou V, et al. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa[J]. BMC Plant Biology, 2008, 8: 31. doi: 10.1186/1471-2229-8-31
[10] Belaj A, del Carmen Dominguez-García M, Atienza S G, et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits[J]. Tree Genetics & Genomes, 2012, 8(2): 365-378. doi: 10.1007/s11295-011-0447-6
[11] Di Guardo M, Scollo F, Ninot A, et al. Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management[J]. Tree Genetics & Genomes, 2019, 15(3): 41. doi: 10.1007/s11295-019-1345-6
[12] 曾宪君, 李 丹, 胡彦鹏, 等. 欧洲黑杨优质核心种质库的初步构建[J]. 林业科学, 2014, 50(9):51-58.
[13] 杨汉波, 张 蕊, 王帮顺, 等. 基于SSR标记的木荷核心种质构建[J]. 林业科学, 2017, 53(6):37-46. doi: 10.11707/j.1001-7488.20170605
[14] Duan H, Cao S, Zheng H, et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection[J]. Scientific Reports, 2017, 7: 13814. doi: 10.1038/s41598-017-13219-0
[15] Feng Y, Yang Z, Tan J, et al. Selection of first generation nucleus population of Pinus massoniana in Guangxi[J]. Journal of Northeast Forestry University, 2018, 46(12): 20-24.
[16] Kumar A, Kumar S, Singh K B M, et al. Designing a mini-core collection effectively representing 3004 diverse rice accessions[J]. Plant Communications, 2020, 1(5): 100049. doi: 10.1016/j.xplc.2020.100049
[17] Langridge P, Waugh R. Harnessing the potential of germplasm collections[J]. Nature Genetics, 2019, 51(2): 200-201. doi: 10.1038/s41588-018-0340-4
[18] Hu J, Zhu J, Xu H. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical & Applied Genetics, 2000, 101(1-2): 264-268. doi: 10.1007/s001220051478
[19] Corak K E, Ellison S L, Simon P W, et al. Comparison of representative and custom methods of generating core subsets of a carrot germplasm collection[J]. Crop Science, 2019, 59(3): 1107-1121. doi: 10.2135/cropsci2018.09.0602
[20] 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37.
[21] Fahrenkrog A M, Neves L G, Resende M F, et al. Population genomics of the eastern cottonwood (Populus deltoides)[J]. Ecology & Evolution, 2017, 7(22): 9426-9440.
[22] Chen C, Chu Y, Ding C, et al. Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using simple sequence repeat markers[J]. BMC Genetics, 2020, 21: 2.
[23] 倪茂磊. 美洲黑杨遗传多样性分析与核心种质库构建[D]. 南京: 南京林业大学, 2011.
[24] 彭 婵, 樊孝萍, 苏晓华, 等. 基于SSR分子标记构建南方型美洲黑杨初级核心种质[J]. 西北植物学报, 2019, 39(2):65-72.
[25] 徐海明, 邱英雄, 胡 晋, 等. 不同遗传距离聚类和抽样方法构建作物核心种质的比较[J]. 作物学报, 2004, 30(9):932-936. doi: 10.3321/j.issn:0496-3490.2004.09.016
[26] Haupt M, Schmid K. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding[J]. Plant, Cell & Environment, 2020, 43(6): 1421-1436. doi: 10.1111/pce.13761
[27] Odong T L, Jansen J, van Eeuwijk F A, et al. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation[J]. Theoretical & Applied Genetics, 2013, 126(2): 289-305. doi: 10.1007/s00122-012-1971-y
[28] 钟永达, 赵善文, 程泽龙, 等. 基于种苗表型初步构建中国樟树核心种质[J]. 江西农业大学学报, 2019, 41(1):81-89.
[29] 李秀诗, 付瑜华, 周 祥, 等. 基于表型性状的薏苡初级核心种质库构建[J]. 热带作物学报, 2020, 41(4):669-675. doi: 10.3969/j.issn.1000-2561.2020.04.006
[30] Katinas L, Crisci J V. Agriculture biogeography: An emerging discipline in search of a conceptual framework[J]. Progress in Physical Geography, 2018, 20: 1-17.
[31] 张 欢, 王 东, 段 帆, 等. 基于水青树叶表型性状的核心种质资源库构建策略[J]. 林业科学研究, 2019, 32(2):166-173.
[32] 牛 玉, 刘维侠, 杨 衍, 等. 樱桃番茄核心种质资源构建策略[J]. 热带作物学报, 2019, 40(12):2356-2363.
[33] 李洪果. 杜仲遗传多样性分析、核心种质构建及分子鉴别[D]. 北京: 中国林业科学研究院, 2017.
[34] Xu Q, Zeng X, Lin B, et al. A microsatellite diversity analysis and the development of core-set germplasm in a large hulless barley (Hordeum vulgare L.) collection[J]. BMC Genetics, 2017, 18(1): 102. doi: 10.1186/s12863-017-0563-x
[35] 章秋平, 刘威生, 刘 宁, 等. 普通杏(Prunus armeniaca)初级核心种质资源的构建及评价[J]. 果树学报, 2009, 26(6):819-825.
[36] 钱玉源, 刘 祎, 崔淑芳, 等. 基于表型的棉花种质资源遗传多样性分析及核心种质的抽提[J]. 华北农学报, 2019, 34(S1):29-35. doi: 10.7668/hbnxb.20190960
[37] 李秀兰, 贾继文, 王军辉, 等. 灰楸形态多样性分析及核心种质初步构建[J]. 植物遗传资源学报, 2013, 14(2):243-248. doi: 10.3969/j.issn.1672-1810.2013.02.009