[1] Pisani O, Lin L H, Lun O O Y, et al. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks[J]. Biogeochemistry, 2016, 127(1): 1-14. doi: 10.1007/s10533-015-0171-7
[2] Miao R, Ma J, Liu Y, et al. Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous-broadleaf mixed forest of central China[J]. Forests, 2019, 10(2): 188. doi: 10.3390/f10020188
[3] Zhou WJ, Sha LQ, Schaefer D A, et al. Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest[J]. Soil Biology and Biochemistry, 2015, 81(6): 255-258.
[4] Mastný J, Kaštovská E, Bárta J, et al. Quality of DOC produced during litter decomposition of peatland plant dominants[J]. Soil Biology and Biochemistry, 2018, 121: 221-230. doi: 10.1016/j.soilbio.2018.03.018
[5] Balestrini R, Delconte C A, Buffagni A, et al. Dynamic of nitrogen and dissolved organic carbon in an alpine forested catchment: Atmospheric deposition and soil solution trends[J]. Nature Conservation, 2019, 34: 41-66. doi: 10.3897/natureconservation.34.30738
[6] Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand[J]. Geoderma, 1998, 81(3-4): 251-264. doi: 10.1016/S0016-7061(97)00092-X
[7] Jones D L, Hughes L T, Murphy D V, et al. Dissolved organic carbon and nitrogen dynamics in temperate coniferous forest plantations[J]. European Journal of Soil Science, 2008, 59(6): 1038-1048. doi: 10.1111/j.1365-2389.2008.01077.x
[8] Yang K, Zhu J J, Yan Q L, et al. Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China[J]. Annals of Forest Science, 2012, 69(7): 795-803. doi: 10.1007/s13595-012-0198-z
[9] 郭绮雯, 段文标, 刘玉萍, 等. 凋落物添加和模拟氮磷沉降对红松凋落物木质素降解和碳释放的影响[J]. 生态学报, 2021, 41(16):6621-6632.
[10] Zukswert J M, Prescott C E. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species[J]. Oecologia, 2017, 185(2): 305-316. doi: 10.1007/s00442-017-3951-z
[11] Sayer E J, Baxendale C, Birkett A J, et al. Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest[J]. Biogeochemistry, 2021, 156: 115-130. doi: 10.1007/s10533-020-00747-7
[12] Franklin H M, Chen C, Carroll A R, et al. Leaf litter of two riparian tree species has contrasting effects on nutrients leaching from soil during large rainfall events[J]. Plant and Soil, 2020, 457: 389-406. doi: 10.1007/s11104-020-04721-y
[13] Wang Q, Kwak J H, Choi W J, et al. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest[J]. Environmental Pollution, 2019, 250: 143-154. doi: 10.1016/j.envpol.2019.04.007
[14] Yu Z P, Huang Z Q, Wang M H, et al. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations[J]. Soil Biology and Biochemistry, 2015, 90: 188-196. doi: 10.1016/j.soilbio.2015.07.026
[15] Huang X L, Chen J Z, Wang D, et al. Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China[J]. Scientific Reports, 2021, 11: 1748. doi: 10.1038/s41598-021-81458-3
[16] Gill A L, Schilling J, Hobbie S E. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter[J]. Ecology Letters., 2021, 24(4): 802-811. doi: 10.1111/ele.13700
[17] Fang H J, Cheng S L, Yu G R, et al. Experimental nitrogen deposition alters the quantity and quality of soil dissolved organic carbon in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Applied Soil Ecology, 2014, 81: 1-11. doi: 10.1016/j.apsoil.2014.04.007
[18] Li S S, Du Y H, Guo P, et al. Effects of different types of N deposition on the fungal decomposition activities of temperate forest soils[J]. Science of the Total Environment, 2014, 497-498: 91-96. doi: 10.1016/j.scitotenv.2014.07.098
[19] Zhang C, Zhang X Y, Zou H T, et al. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China[J]. Biogeosciences, 2017, 14(20): 4815-4827. doi: 10.5194/bg-14-4815-2017
[20] Geng J, Fang H, Cheng S, et al. Effects of N deposition on the quality and quantity of soil organic matter in a boreal forest: Contrasting roles of ammonium and nitrate[J]. Catena, 2020, 198: 104996.
[21] 马书国, 杨玉盛, 谢锦升, 等. 亚热带6种老龄天然林及杉木人工林的枯落物持水性能[J]. 亚热带资源与环境学报, 2010, 5(2):31-38. doi: 10.3969/j.issn.1673-7105.2010.02.005
[22] Edwards K A, Mcculloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology and Biochemistry, 2006, 38(9): 2843-2851.
[23] Huygens D, Boeckx P, Templer P, et al. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils[J]. Nature Geoscience, 2008, 1: 543-548. doi: 10.1038/ngeo252
[24] Yu Z, Zhang Q, Kraus T E C, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002, 61: 173-198. doi: 10.1023/A:1020221528515
[25] Xiong Y M, Zeng H, Xia H P, et al. Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter-soil systems[J]. Plant and Soil, 2014, 379: 217-229. doi: 10.1007/s11104-014-2033-9
[26] Zhu T, Meng T, Zhang J, et al. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China[J]. Biology and Fertility of Soils, 2013, 49(3): 323-331. doi: 10.1007/s00374-012-0725-y
[27] 董冬玉, 王丹婷, 马红亮, 等. 添加葡萄糖对中亚热带阔叶林土壤氮转化的影响[J]. 土壤, 2019, 51(1):19-24.
[28] Ma H L, Yin YF, Gao R, et al. Response of nitrogen transformation to glucose additions in soils at two subtropical forest types subjected to simulated nitrogen deposition[J]. Journal of Soils and Sediments, 2019, 19(5): 2166-2175. doi: 10.1007/s11368-018-02237-8
[29] Cheng J, Chen Y, He T, et al. Soil nitrogen leaching decreases as biogas slurry DOC/N ratio increases[J]. Applied Soil Ecology, 2016, 111: 105-113.
[30] 张德强, 孙晓敏, 周国逸, 等. 南亚热带森林土壤CO2排放的季节动态及其对环境变化的响应[J]. 中国科学(D辑), 2006, 36(A01):130-138.
[31] 高 艳, 马红亮, 高 人, 等. 模拟氮沉降对森林土壤酚类物质和可溶性糖含量的影响[J]. 土壤, 2014, 46(1):41-46.
[32] Sotta E D, Corre M D, Veldkamp E. Differing N status and N retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuanã, Brazil[J]. Soil Biology and Biochemistry, 2008, 40(3): 740-750. doi: 10.1016/j.soilbio.2007.10.009
[33] 马红亮, 刘维丽, 高 人, 等. 凋落物与单宁酸对森林土壤无机氮的影响[J]. 应用生态学报, 2011, 22(1):61-65.
[34] Xing S H, Chen C R, Zhou B Q, et al. Soil soluble organic nitrogen and active microbial characteristics under adjacent coniferous and broadleaf plantation forests[J]. Journal of Soils and Sediments, 2010, 10(4): 748-757. doi: 10.1007/s11368-009-0159-9
[35] Lee M H, Park J H, Matzner E. Sustained production of dissolved organic carbon and nitrogen in forest floors during continuous leaching[J]. Geoderma, 2018, 310: 163-169. doi: 10.1016/j.geoderma.2017.07.027
[36] 郭绮雯, 段文标, 陈立新, 等. 模拟凋落物添加与氮磷沉降对红松凋落物生态化学计量特征的影响[J]. 植物营养与肥料学报, 2021, 27(7):1222-1233. doi: 10.11674/zwyf.20592
[37] Cyle K T, Hill N, Young K, et al. Substrate quality influences organic matter accumulation in the soil silt and clay fraction[J]. Soil Biology and Biochemistry, 2016, 103: 138-148. doi: 10.1016/j.soilbio.2016.08.014
[38] Jiang X, Cao L, Zhang R, et al. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi[J]. Applied Soil Ecology, 2014, 80: 108-115. doi: 10.1016/j.apsoil.2014.04.002
[39] Vestgarden L S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L. ) needle litter decomposition: effects of internal and external nitrogen[J]. Soil Biology and Biochemistry, 2001, 33(3-4): 465-474.
[40] Ma H L, Lin W, Gao R, et al. Nitrogen addition change soil N pools with litter removal or not in subtropical forest[J]. Soil Science and Plant Nutrition, 2020, 66(3): 421-428. doi: 10.1080/00380768.2020.1754732
[41] Xiong Y M, Xu X L, Zeng H, et al. Low nitrogen retention in soil and litter under conditions without plants in a subtropical pine plantation[J]. Forests, 2015, 6(7): 2387-2404.
[42] Zhang J, Müller C, Zhu T, et al. Heterotrophic nitrification is the predominant NO3 production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China[J]. Biology and Fertility of Soils, 2011, 47(5): 533-542. doi: 10.1007/s00374-011-0567-z
[43] 陈灿灿, 马红亮, 高 人, 等. 施氮与凋落物去除影响下中亚热带阔叶林土壤氮素矿化潜势和硝化潜势研究[J]. 生态环境学报, 2021, 30(3):503-511.
[44] Fujii K, Yamada T, Hayakawa C, et al. Decoupling of protein depolymerization and ammonification in nitrogen mineralization of acidic forest soils[J]. Applied Soil Ecology, 2020, 153: 103572. doi: 10.1016/j.apsoil.2020.103572