[1] 朱格麟. 藜科植物的起源、分化和地理分布[J]. 植物分类学报, 1995, 34(5):486-504.
[2] 楚光明, 王 梅, 张硕新. 准噶尔盆地南缘洪积扇无叶假木贼种群空间点格局[J]. 林业科学, 2014, 50(4):8-14.
[3] 王婷婷, 楚光明, 江 萍, 等. 不同处理对无叶假木贼种子萌发的影响[J]. 西北林学院学报, 2017, 32(5):125-129. doi: 10.3969/j.issn.1001-7461.2017.05.22
[4] 陈 华, 李援朝. 假木贼属植物化学成分及生物活性研究进展[J]. 天然产物研究与开发, 2004, 16(6):585-589. doi: 10.3969/j.issn.1001-6880.2004.06.025
[5] 杜 华, 周立刚, 李 春, 等. 藜科植物化学成分与生物活性的研究进展[J]. 天然产物研究与开发, 2007, 19(5):884-889. doi: 10.3969/j.issn.1001-6880.2007.05.038
[6] 孙 艳, 沈庆国, 屈玲霞, 等. 无叶假木贼的化学成分及抗菌活性研究[J]. 中草药, 2022, 53(8):2278-2284. doi: 10.7501/j.issn.0253-2670.2022.08.003
[7] XIAO S Z, XU P, DENG Y T, et al. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L. ] Lam)[J]. BMC Genomics, 2021, 22(1): 262. doi: 10.1186/s12864-021-07544-y
[8] MENG J, LI X P, LI H T, et al. Comparative analysis of the complete chloroplast genomes of four Aconitum medicinal species[J]. Molecules., 2018, 23(5): 1015-1017. doi: 10.3390/molecules23051015
[9] LI P, LU R S, XU W Q, et al. Comparative genomics and phylogenomics of East Asian Tulips (Amana, Liliaceae)[J]. Frontiers in Plant Science, 2017, 8: 451.
[10] MENEZES A P A, RESENDE-MOREIRA L C, BUZATTI R S O, et al. Chloroplast genomes of Byrsonima species (Malpighiaceae): Comparative analysis and screening of high divergence sequences[J]. Scientific Reports, 2018, 8(1): 2210. doi: 10.1038/s41598-018-20189-4
[11] ZHOU J W, ZHANG S, WANG J, et al. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution[J]. Scientific Reports, 2021, 11(1): 9471. doi: 10.1038/s41598-021-88160-4
[12] de SANTANA LOPES, AMANDA, PACHECO, et al. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales[J]. Plant Cell Reports, 2018, 37(2): 307-328. doi: 10.1007/s00299-017-2231-z
[13] VAUGHN JUSTIN N, CHALUVADI, SRINIVASA R, et al. Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology[J]. PLoS ONE, 2014, 9(10): e108581. doi: 10.1371/journal.pone.0108581
[14] BOEL G, LETSO R, NEELY H, et al. Codon influence on protein expression in E. coli correlates with mRNA levels[J]. Nature, 2016, 529(7586): 358-363. doi: 10.1038/nature16509
[15] CHENG Y, HE X, PRIYADARSHANI S V G N, et al. Assembly and comparative analysis of the complete mitochondrial genome of Suaeda glauca[J]. BMC Genomics, 2021, 22(1): 167. doi: 10.1186/s12864-021-07490-9
[16] SHE H, LIU Z, XU Z, et al. Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation[J]. Scientific Reports, 2022, 12(1): 856. doi: 10.1038/s41598-022-04918-4
[17] 张鲁杰, 夏秀英, 徐 娜, 等. 高效提取越橘成熟组织基因组DNA的方法[J]. 华北农学报, 2008, 3(S2):205-208. doi: 10.7668/hbnxb.2008.S2.047
[18] JIN J J, YU W B, YANG J B, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
[19] HUANG D I, CRONK Q C B. Plann: a command-line application for annotating plastome sequences[J]. Applications in Plant Sciences, 2015, 3(8): 1500026. doi: 10.3732/apps.1500026
[20] BENSON D A, KARSCH-MIZRACHI I, LIPMAN D J, et al. GenBank[J]. Nucleic Acids Research, 2010, 39(suppl_1): D32.
[21] GREINER S, LEHWARK P, BOCK R. Organellar Genome DRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1): W59. doi: 10.1093/nar/gkz238
[22] KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research, 2001, 29(22): 4633-4642. doi: 10.1093/nar/29.22.4633
[23] BEIER S, THIEL T, MÜNCH T, et al. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585. doi: 10.1093/bioinformatics/btx198
[24] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010
[25] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution, 2020, 37(5): 1530-1534. doi: 10.1093/molbev/msaa015
[26] ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248
[27] WOLF P G, DER J, DUFFY A, et al. The evolution of chloroplast genes and genomes in ferns[J]. Plant Molecular Biology, 2010, 76(3-5): 251-261.
[28] SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression[J]. The EMBO Journal, 1986, 5(9): 2029-2043.
[29] DUGAS D V, HERNANDEZ D, KOENEN E J M, et al. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP[J]. Scientific Reports, 2015, 5(1): 16958. doi: 10.1038/srep16958
[30] WANG W B, YU H, WANG J H, et al. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae)[J]. International Journal of Molecular Sciences, 2017, 18(11): 2288. doi: 10.3390/ijms18112288
[31] 蒋礼玲, 王琳超, 黄新荣, 等. 藜属植物叶绿体基因组结构与系统进化[J]. 应用与环境生物学报, 2022, 28(5):1255-1261.
[32] 李泳潭, 张 军, 黄亚丽, 等. 杜梨叶绿体基因组分析[J]. 园艺学报, 2020, 47(6):1021-1032.
[33] 蒋思思, 袁 军, 周文君, 等. 薄壳山核桃(Carya illinoinensis)叶绿体基因组及其特征分析[J]. 园艺学报, 2022, 49(8):1772-1784.
[34] GUISINGER M M, CHUMLEY T W, KUEHL J V, et al. Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae[J]. Journal of Molecular Evolution, 2010, 70(2): 149-166. doi: 10.1007/s00239-009-9317-3
[35] KRISHNAN J, MISHRA R K. Code in the Non-Coding[J]. Proceedings of the Indian National Science Academy, 2015, 81(3): 609-628.
[36] KOROL A B, FAHIMA T, NEVO E. Microsatellites within genes: structure, function, and evolution[J]. Molecular Biology and Evolution, 2004, 21(6): 991-1007. doi: 10.1093/molbev/msh073
[37] 蒋 明, 柯世省, 王军峰. 多脉铁木叶绿体基因组的序列特征和系统发育[J]. 林业科学, 2020, 56(5):60-68. doi: 10.11707/j.1001-7488.20200507
[38] 高鸣泽. 不同品种藜麦叶绿体基因组全序列及其系统发育关系[D]. 太原: 山西大学, 2021.
[39] 努尔古丽·阿木提. 新疆藜科植物系统分类学研究[D]. 乌鲁木齐: 新疆大学, 2013.
[40] DONG S, YING Z, YU S, et al. Complete chloroplast genome of Stephania tetrandra (Menispermaceae) from Zhejiang Province: insights into molecular structures, comparative genome analysis, mutational hotspots and phylogenetic relationships[J]. BMC Genomics, 2021, 22(1): 880. doi: 10.1186/s12864-021-08193-x
[41] HUANG X, JIAO Y, GUO J, et al. Analysis of codon usage patterns in Haloxylon ammodendron based on genomic and transcriptomic data[J]. Gene, 2022, 845: 146842. doi: 10.1016/j.gene.2022.146842
[42] ZHANG Z C, DAI W, WANG Y, et al. Analysis of synonymous codon usage patterns in torque Teno sus virus 1 (TTSuV1)[J]. Archives of Virology, 2013, 158(1): 145-154. doi: 10.1007/s00705-012-1480-y
[43] CAMPBELL W H, GOWRI G. Codon usage in higher plants, green algae, and cyanobacteria[J]. Plant Physiology, 1990, 92(1): 1-11. doi: 10.1104/pp.92.1.1