[1] NAUMANN G, ALFIERI L, WYSER K, et al. Global changes in drought conditions under different levels of warming[J]. Geophysical Research Letters, 2018, 45(7): 3285-3296. doi: 10.1002/2017GL076521
[2] TARDIEU F, SIMONNEAU T, MULLER B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach[J]. Annual review of plant biology, 2018, 69(1): 733-759. doi: 10.1146/annurev-arplant-042817-040218
[3] 王 巍, 李庆康, 马克平. 东灵山地区辽东栎幼苗的建立和空间分布[J]. 植物生态学报, 2000, 24(5):595-600. doi: 10.3321/j.issn:1005-264X.2000.05.014
[4] 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37.
[5] 曹林青, 钟秋平, 罗 帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143. doi: 10.13275/j.cnki.lykxyj.2018.03.018
[6] REICHGELT T, LEE W G. Geographic variation of leaf form among indigenous woody angiosperms in New Zealand[J]. New Zealand Journal of Botany, 2022, 60(2): 134-158. doi: 10.1080/0028825X.2021.1960384
[7] 罗孟容, 梁文斌, 杨 艳, 等. 干旱胁迫对栀子光合作用及叶绿体超微结构的影响[J]. 经济林研究, 2021, 39(03):165-174. doi: 10.14067/j.cnki.1003-8981.2021.03.020
[8] QIN D W, CHEN W J, ZHONG L X, et al. Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering[J]. Global Ecology and Conservation, 2021, 28: e01702. doi: 10.1016/j.gecco.2021.e01702
[9] SONG X, ZHOU G, HE Q. Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering[J]. Sustainability, 2021, 13(13): 7218. doi: 10.3390/su13137218
[10] GUO Y Y, TIAN S S, LIU S S, et al. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress[J]. Photosynthetica, 2018, 56(3): 861-872. doi: 10.1007/s11099-017-0741-0
[11] 闫兴富, 邓晓娟, 王 静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响[J]. 应用生态学报, 2020, 31(10):3331-3339. doi: 10.13287/j.1001-9332.202010.006
[12] YAN M J, YAMANAKA N, YAMAMOTO F, et al. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying[J]. Acta Physiologiae Plantarum, 2010, 32(1): 183-189. doi: 10.1007/s11738-009-0397-x
[13] DU S, WANG Y L, KUME T, et al. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China[J]. Agricultural and Forest Meteorology, 2011, 151(1): 1-10. doi: 10.1016/j.agrformet.2010.08.011
[14] 石耀辉, 周广胜, 蒋延玲, 等. 贝加尔针茅响应降水变化敏感指标及关键阈值[J]. 生态学报, 2017, 37(8):2620-2630.
[15] 张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1):167-176. doi: 10.11686/cyxb20140120
[16] BURNETT A C, SERBIN S P, DAVIDSON K J, et al. Detection of the metabolic response to drought stress using hyperspectral reflectance[J]. Journal of Experimental Botany, 2021, 72(18): 6474-6489. doi: 10.1093/jxb/erab255
[17] LI H, YIN Z, MANLEY P, et al. Early drought plant stress detection with bi-directional long-term memory networks[J]. Photogrammetric Engineering & Remote Sensing, 2018, 84(7): 459-468.
[18] RAMOS-GIRALDO P, REBERG-HORTON C, LOCKE A M, et al. Drought stress detection using low-cost computer vision systems and machine learning techniques[J]. IT Professional, 2020, 22(3): 27-29. doi: 10.1109/MITP.2020.2986103
[19] KENCHANMANE RAJU S K, ADKINS M, ENERSEN A, et al. Leaf Angle eXtractor: A high‐throughput image processing framework for leaf angle measurements in maize and sorghum[J]. Applications in plant sciences, 2020, 8(8): e11385.
[20] NI Z, LIU Z, HUO H, et al. Early water stress detection using leaf-level measurements of chlorophyll fluorescence and temperature data[J]. Remote Sensing, 2015, 7(3): 3232-3249. doi: 10.3390/rs70303232
[21] BRIGLIA N, WILLIAMS K, WU D, et al. Image-based assessment of drought response in grapevines[J]. Frontiers in plant science, 2020, 11: 595. doi: 10.3389/fpls.2020.00595
[22] SMART R E. Aspects of water relations of the grapevine (Vitis vinifera)[J]. American Journal of Enology and Viticulture, 1974, 25(2): 84-91. doi: 10.5344/ajev.1974.25.2.84
[23] 林 琭, 汤 昀, 张纪涛, 等. 不同水势对黄瓜花后叶片气体交换及叶绿素荧光参数的影响[J]. 应用生态学报, 2015, 26(7):2030-2040. doi: 10.13287/j.1001-9332.20150506.026
[24] 李鹏民, 高辉远. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6):559-566.
[25] TSSIMILLI-MICHAEL M, STRASSER R J. In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants[J]. Mycorrhiza, 2008, 3: 679-703.
[26] TANKARI M, WANG C, MA H, et al. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress[J]. Agricultural Water Management, 2021, 245: 106565. doi: 10.1016/j.agwat.2020.106565
[27] ZHAO D, ZHANG X, FANG Z, et al. Physiological and transcriptomic analysis of tree peony (Paeonia section Moutan DC.) in response to drought stress[J]. Forests, 2019, 10(2): 135. doi: 10.3390/f10020135
[28] BI A, FAN J, HU Z, et al. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses[J]. Frontiers in Plant Science, 2016, 7(403): 453.
[29] GUHA A, SENGUPTA D, REDDY A R. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought[J]. Journal of Photochemistry and Photobiology B:Biology, 2013, 119: 71-83. doi: 10.1016/j.jphotobiol.2012.12.006
[30] FLEXAS J, BARON M, BOTA J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris)[J]. Journal of experimental Botany, 2009, 60(8): 2361-2377. doi: 10.1093/jxb/erp069
[31] LI F L, BAO W K, WU N. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii[J]. Agroforestry systems, 2009, 77(3): 193-201. doi: 10.1007/s10457-008-9199-1
[32] BANO H, ATHAR H R, ZAFAR Z U, et al. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek][J]. Physiologia Plantarum, 2021, 172(2): 1244-1254. doi: 10.1111/ppl.13327
[33] MANAA A, GOUSSI R, DERBALI W, et al. Photosynthetic performance of quinoa (Chenopodium quinoa Willd. ) after exposure to a gradual drought stress followed by a recovery period[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2021, 1862(5): 148383. doi: 10.1016/j.bbabio.2021.148383
[34] 王海珍, 梁宗锁, 韩蕊莲, 等. 辽东栎 (Quercus liaotungensis) 幼苗对土壤干旱的生理生态适应性研究[J]. 植物研究, 2005, 25(3):311-316.
[35] RYBKA K, JANASZEK-MAŃKOWSKA M, SIEDLARZ P, et al. Machine learning in determination of water saturation deficit in wheat leaves on basis of Chl a fluorescence parameters[J]. Photosynthetica, 2019, 57(1): 226-230. doi: 10.32615/ps.2019.017
[36] SOUSARAEI N, MASHAYEKHI K, MOUSAVIZADEH S J, et al. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses[J]. Horticulture, environment, and biotechnology, 2021, 62(4): 521-535. doi: 10.1007/s13580-020-00328-5
[37] ZHOU R, KAN X, CHEN J, et al. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals[J]. Environmental and Experimental Botany, 2019, 158: 51-62. doi: 10.1016/j.envexpbot.2018.11.005