[1] 樊松乐, 王纪坤, 覃 碧, 等. 植物转录因子研究方法及应用[J]. 分子植物育种, 2017, 17(15):5003-5009.
[2] NG D W K, ABEYSINGHE J K, KAMALI M. Regulating the regulators: the control of transcription factors in plant defense signaling[J]. International Journal of Molecular Sciences, 2018, 19(12): 3737. doi: 10.3390/ijms19123737
[3] SINGH K B, FOLEY R C, OÑATE-SÁNCHEZ L. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436. doi: 10.1016/S1369-5266(02)00289-3
[4] LANDSCHULZ W H, JOHNSON P F, MCKNIGHT S L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins[J]. Science, 1988, 240(4860): 1759-1764. doi: 10.1126/science.3289117
[5] JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111.
[6] SCHÜTZE K, HARTER K, CHABAN C. Post-translational regulation of plant bZIP factors[J]. Trends in Plant Science, 2008, 13(5): 247-255. doi: 10.1016/j.tplants.2008.03.002
[7] DRÖGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family-an update[J]. Current Opinion in Plant Biology, 2018, 45: 36-49. doi: 10.1016/j.pbi.2018.05.001
[8] BANERJEE A, ROYCHOUDHURY A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress[J]. Protoplasma, 2017, 254(1): 3-16. doi: 10.1007/s00709-015-0920-4
[9] HOWELL S H. Endoplasmic reticulum stress responses in plants[J]. Annual Review of Plant Biology, 2013, 64(1): 477-499. doi: 10.1146/annurev-arplant-050312-120053
[10] FU Z Q, DONG X. Systemic acquired resistance: turning local infection into global defense[J]. Annual Review of Plant Biology, 2013, 64(1): 839-863. doi: 10.1146/annurev-arplant-042811-105606
[11] SHEN H S, CAO K M, WANG X P. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer[J]. Biochemical and Biophysical Research Communications, 2007, 362(2): 425-430. doi: 10.1016/j.bbrc.2007.08.026
[12] INABA S, KURATA R, KOBAYASHI M, et al. Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots[J]. The Plant Journal, 2015, 84(2): 323-334. doi: 10.1111/tpj.12996
[13] XU C Y, CAO H F, ZHANG Q Q, et al. Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration[J]. Nature Plants, 2018, 4(2): 108-115. doi: 10.1038/s41477-017-0095-4
[14] DRÖGE-LASER W, WEISTE C. The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis[J]. Trends in Plant Science, 2018, 23(5): 422-433. doi: 10.1016/j.tplants.2018.02.003
[15] YAMASHITA Y, TAKAMATSU S, GLASBRENNER M, et al. Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2[J]. FEBS Letters, 2017, 591(9): 1266-1277. doi: 10.1002/1873-3468.12634
[16] PEDROTTI L, WEISTE C, NÄGELE T, et al. Snf1-RELATED KINASE1-controlled C/S(1)-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness[J]. The Plant Cell, 2018, 30(2): 495-509. doi: 10.1105/tpc.17.00414
[17] WANG H, ZHANG Y T, NORRIS A, et al. S1-bZIP Transcription factors play important roles in the regulation of fruit quality and stress response[J]. Frontiers in Plant Science, 2021, 12: 802802.
[18] WEISTE C, PEDROTTI L, SELVANAYAGAM J, et al. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth[J]. PLOS Genetics, 2017, 13(2): e1006607. doi: 10.1371/journal.pgen.1006607
[19] WELTMEIER F, RAHMANI F, EHLERT A, et al. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development[J]. Plant Molecular Biology, 2008, 69(1-2): 107-119.
[20] IGLESIAS-FERNáNDEZ R, BARRERO-SICILIA C, CARRILLO-BARRAL N, et al. Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7[J]. The Plant Journal, 2013, 74(5): 767-780. doi: 10.1111/tpj.12162
[21] SUN X L, LI Y, CAI H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. Journal of Plant Research, 2011, 125(3): 429-438.
[22] WELTMEIER F, EHLERT A, MAYER C S, et al. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors[J]. The EMBO Journal, 2006, 25(13): 3133-3143. doi: 10.1038/sj.emboj.7601206
[23] HARTMANN L, PEDROTTI L, WEISTE C, et al. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots[J]. The Plant Cell, 2015, 27(8): 2244-2260. doi: 10.1105/tpc.15.00163
[24] 王瑞文, 郭 赟, 周忠诚. 杨树育种研究进展[J]. 湖北林业科技, 2016, 45(6):33-35 + 80.
[25] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604. doi: 10.1126/science.1128691
[26] MA J C, WAN D S, DUAN B B, et al. Genome sequence and genetic transformation of a widely distributed and cultivated poplar[J]. Plant Biotechnology Journal, 2019, 17(2): 451-460. doi: 10.1111/pbi.12989
[27] QIU D Y, BAI S L, MA J C, et al. The genome of Populus alba × Populus tremula var. glandulosa clone 84K[J]. DNA Research, 2019, 26(5): 423-431. doi: 10.1093/dnares/dsz020
[28] AN X M, GAO K, CHEN Z, et al. High quality haplotype-resolved genome assemblies of Populus tomentosa Carr., a stabilized interspecific hybrid species widespread in Asia[J]. Molecular Ecology Resources, 2021, 22(2): 786-802.
[29] GU Z L, STEINMETZ L M, GU X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421(6918): 63-66. doi: 10.1038/nature01198
[30] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. doi: 10.1126/science.290.5494.1151
[31] ABE H, YAMAGUCHI-SHINOZAKI K, URAO T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J]. The Plant cell, 1997, 9(10): 1859-1868.
[32] ABE H, URAO T, ITO T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell, 2003, 15(1): 63-78. doi: 10.1105/tpc.006130
[33] JEFFARES D C, PENKETT C J, BÄHLER J. Rapidly regulated genes are intron poor[J]. Trends in Genetics, 2008, 24(8): 375-378. doi: 10.1016/j.tig.2008.05.006
[34] HANSON J, HANSSEN M, WIESE A, et al. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2[J]. The Plant Journal, 2007, 53(6): 935-949.
[35] MA J, HANSSEN M, LUNDGREN K, et al. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism[J]. New Phytologist, 2011, 191(3): 733-745. doi: 10.1111/j.1469-8137.2011.03735.x
[36] ZHU M K, MENG X Q, CAI J, et al. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato[J]. BMC Plant Biology, 2018, 18(1): 83. doi: 10.1186/s12870-018-1299-0