[1] 罗 扬, 刘书影, 周柳婷, 等. 连栽杉木根际土壤镰刀菌属真菌群落变化规律[J]. 生态学杂志, 2020, 39(9):2921-2929.
[2] 郭佳欢, 孙杰杰, 冯会丽, 等. 杉木人工林土壤肥力质量的演变趋势及维持措施的研究进展[J]. 浙江农林大学学报, 2020, 37(4):801-809.
[3] 张彦东, 白尚斌. 氮素形态对树木养分吸收和生长的影响[J]. 应用生态学报, 2003 , 14(11):2044-2048.
[4] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9):2620-2625.
[5] 陈雅敏. 亚热带主要造林树种的氮吸收偏好及其调控因子[D]. 福州: 福建师范大学, 2018.
[6] 闫小莉, 胡文佳, 马远帆, 等. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略[J]. 林业科学, 2020, 56(2):1-11.
[7] 刘 先, 索沛蘅, 杜大俊, 等. 连栽杉木人工林参与土壤碳氮转化过程酶活性及其与土壤理化因子的相关性[J]. 生态学报, 2020, 40(1):247-256.
[8] 陈郑洪, 阮超越, 程芳花, 等. 连栽杉木丛枝菌根真菌侵染率和土壤性质的关系[J]. 亚热带资源与环境学报, 2019, 14(4):43-47,70.
[9] 刘正辉, 李德豪. 氨氧化古菌及其对氮循环贡献的研究进展[J]. 微生物学通报, 2015, 42(4):774-782.
[10] 刘 帅. 典型生境中氨氧化古菌(AOA)和氨氧化细菌(AOB)的微生物生态学研究[D]. 杭州: 浙江大学, 2015.
[11] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1):98-108.
[12] LU L, HAN W Y, ZHANG J B, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10): 1978-1984. doi: 10.1038/ismej.2012.45
[13] 刘爱琴, 范少辉, 林开敏, 等. 不同栽植代数杉木林养分循环的比较研究[J]. 植物营养与肥料学报, 2005 , 11(2):273-278.
[14] 边雪廉, 赵文磊, 岳中辉, 等. 土壤酶在农业生态系统碳、氮循环中的作用研究进展[J]. 中国农学通报, 2016, 32(4):171-178.
[15] 杜国坚, 张庆荣, 洪利兴, 等. 杉木连栽林地土壤微生物区系及其生化特性和理化性质的研究[J]. 浙江林业科技, 1995 , 15(5):14-20.
[16] 孙启武, 杨承栋, 焦如珍. 江西大岗山连栽杉木人工林土壤性质的变化[J]. 林业科学, 2003, 39(3):1-5.
[17] 何振立. 土壤微生物量的测定方法: 现状和展望[J]. 土壤学进展, 1994, 22(4):36-44.
[18] TAYLOR A E, GIGUERE A T, ZOEBELEIN C M, et al. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria[J]. The ISME Journal, 2017, 11(4): 896-908. doi: 10.1038/ismej.2016.179
[19] TABATABAI M A, BREMNER J M. Assay of urease activity in soils[J]. Soil Biology and Biochemistry, 1972, 4(4): 479-487. doi: 10.1016/0038-0717(72)90064-8
[20] JOHNSON J L, TEMPLE K L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil[J]. Soil Science Society of America Journal, 1964, 28(2): 207-209. doi: 10.2136/sssaj1964.03615995002800020024x
[21] HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2364-2374. doi: 10.1111/j.1462-2920.2007.01358.x
[22] FITZGERALD C M, CAMEJO P, OSHLAG J Z, et al. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen[J]. Water Research, 2015, 70: 38-51. doi: 10.1016/j.watres.2014.11.041
[23] CHEN L C, GUAN X, WANG Q K, et al. Effects of phenolic acids on soil nitrogen mineralization over successive rotations in Chinese fir plantations[J]. Journal of Forestry Research, 2020, 31(1): 303-311. doi: 10.1007/s11676-018-0842-z
[24] CHEN T H, CHIU C Y, TIAN G. Seasonal dynamics of soil microbial biomass in coastal sand dune forest[J]. Pedobiologia, 2005, 49(6): 645-653. doi: 10.1016/j.pedobi.2005.06.005
[25] 唐楚珺, 高李文, 彭紫薇, 等. 连栽杉木人工林土壤氮循环功能基因丰度特征 [J]. 应用与环境生物学报 , 2023 , 29 (1): 154-162 .
[26] 张成霞, 南志标. 土壤微生物生物量的研究进展[J]. 草业科学, 2010, 27(6):50-57. doi: 10.3969/j.issn.1001-0629.2010.06.009
[27] 刘金炽, 招礼军, 朱栗琼, 等. 喀斯特地区泡核桃林土壤酶、微生物量及无机氮的动态研究[J]. 广东农业科学, 2020, 47(10):83-92.
[28] 胡亚林, 汪思龙, 颜绍馗, 等. 杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J]. 应用生态学报, 2005 , 16 (8):1411-1416.
[29] REN C, KANG D, WU J P, et al. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China[J]. Geoderma, 2016, 282: 103-111. doi: 10.1016/j.geoderma.2016.07.018
[30] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
[31] 张 威, 张 明, 张旭东, 等. 土壤蛋白酶和芳香氨基酶的研究进展[J]. 土壤通报, 2008 , 39(6):1468-1474.
[32] 杨玉盛, 邱仁辉, 俞新妥, 等. 杉木连栽土壤微生物及生化特性的研究[J]. 生物多样性, 1999 , 7(1):1-7.
[33] 胡亚林, 汪思龙, 黄 宇, 等. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J]. 生态学报, 2005 , 25(10):2662-2668.
[34] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. doi: 10.1038/nature04983
[35] 王 涛, 马宇丹, 许亚东, 等. 退耕刺槐林土壤养分与酶活性关系[J]. 生态学杂志, 2018, 37(7):2083-2091.
[36] 李 娟, 赵秉强, 李秀英, 等. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报, 2008 , 32(4):891-899.
[37] 李延茂, 胡江春, 张 晶, 等. 杉木连栽土壤微生物多样性的比较研究[J]. 应用生态学报, 2005 , 16(7):1275-1278.
[38] 冯宗炜, 陈楚莹, 李昌华, 等. 湖南会同杉木人工林生长发育与环境的相互关系[J]. 南京林业大学学报(自然科学版), 1982(3):19-38.
[39] QIN H L, YUAN H Z, ZHANG H, et al. Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3-N loss in acidic soil of sloped land[J]. Biology and Fertility of Soils, 2013, 49(6): 767-776. doi: 10.1007/s00374-012-0767-1
[40] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications, 2015, 6(1): 6707. doi: 10.1038/ncomms7707
[41] 魏晓骁. 连栽障碍地杉木优良无性系土壤特性分析及酚酸鉴定[D]. 福州: 福建农林大学, 2017: 4-5.
[42] KONNEKE M, BERNHARD A E, de la TORRE J R, et al. Isolation of an autotrophic ammonia- oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543-546. doi: 10.1038/nature03911
[43] SUN D L, JIANG X, WU Q L, et al. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology, 2013, 79(19): 5962-5969. doi: 10.1128/AEM.01282-13
[44] JIAO S, XU Y, ZHANG J, et al. Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems[J]. Microbiome, 2019, 7 (1): 15. doi: 10.1186/s40168-019-0630-9
[45] ZHALNINA K, de QUADROS PD, CAMARGO F A O, et al. Drivers of archaeal ammonia-oxidizing communities in soil[J]. Front Microbiol., 2012, 3 (210): 210.
[46] 魏志超, 黄 娟, 刘雨晖, 等. 不同发育阶段杉木人工林土壤细菌类群特征[J]. 西南林业大学学报(自然科学), 2017, 37(5):122-129.
[47] 李艳春, 林忠宁, 陆 烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响[J]. 福建农业学报, 2019, 34(6):690-696.
[48] SEKARAN U, SAGAR K L, DENARDIN L G D O, et al. Responses of soil biochemical properties and microbial community structure to short and long-term no-till systems[J]. European Journal of Soil Science, 2020, 71(6): 1018-1033. doi: 10.1111/ejss.12924
[49] GÄRTNER A, BLÜMEL M, WIESE J, et al. Isolation and characterisation of bacteria from the Eastern Mediterranean deep sea[J]. Antonie van Leeuwenhoek, 2011, 100(3): 421-435. doi: 10.1007/s10482-011-9599-5
[50] GUO J, FENG H, MCNIE P, et al. The Effect of the conversion from natural broadleaved forests into Chinese fir (Cunninghamia lanceolata (Lamb. ) Hook. ) plantations on soil microbial communities and nitrogen functional genes[J]. Forests, 2022, 13(2): 158. doi: 10.3390/f13020158
[51] STEIN L Y, ARP D J. Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite[J]. Applied and Environmental Microbiology, 1998, 64(10): 4098-4102. doi: 10.1128/AEM.64.10.4098-4102.1998
[52] 郑有坤, 王宪斌, 辜运富, 等. 若尔盖高原湿地土壤氨氧化古菌的多样性[J]. 微生物学报, 2014, 54(9):1090-1096.
[53] ZHOU L T, LI J J, LUO Y, et al. Variation in soil fungal community structure during successive rotations of Casuarina equisetifolia plantations as determined by high-throughput sequencing analysis[J]. Plant Growth Regulation, 2019, 87(3): 445-453. doi: 10.1007/s10725-019-00483-5
[54] TANG Y, YU G, ZHANG X, et al. Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils[J]. Applied Soil Ecology, 2018, 124: 218-228. doi: 10.1016/j.apsoil.2017.10.029