[1] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14. doi: 10.1007/s00425-003-1105-5
[2] Gao C, Wang Y, Liu G, et al. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress[J]. Plant Molecular Biology Reports, 2010, 28(1):77-89. doi: 10.1007/s11105-009-0129-9
[3] Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins calcium sensors for specific signal response coupling in plants[J]. The Plant Cell, 2002, 14(suppl):S389-S400.
[4] Ma B J, Gu Z M, Tang H J, et al. Preliminary study on the function of calcineurin B-like protein gene OsCBL8 in rice[J]. Rice Science, 2010, 17(1):10-18. doi: 10.1016/S1672-6308(08)60099-2
[5] 李利斌, 刘开昌, 王殿峰, 等.玉米CBL基因的生物信息学分析[J].玉米科学, 2010, 18(1):6-11.
[6] 赵晋锋, 余爱丽, 田岗, 等.谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析[J].作物学报, 2013, 39(2):360-367.
[7] Lewit-Bentley A, Réty S. EF-hand calcium-binding proteins[J]. Current Opinion in Structural Biology, 2000, 10(6):637-643. doi: 10.1016/S0959-440X(00)00142-1
[8] Kolukisaoglu ü, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004, 134(1):43-58. doi: 10.1104/pp.103.033068
[9] Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. Plant Cell, 2000, 12(9):1667-1678. doi: 10.1105/tpc.12.9.1667
[10] Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J]. The Plant Cell, 2003, 15(8):1833-1845. doi: 10.1105/tpc.012393
[11] Kudla J, Xu Q, Harter K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences, 1999, 96(8):4718-4723. doi: 10.1073/pnas.96.8.4718
[12] Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945. doi: 10.1126/science.280.5371.1943
[13] Martínez-Atienza J, Jiang X, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice[J]. Plant Physiology, 2007, 143(2):1001-1012.
[14] Hashimoto K, Eckert C, Anschutz U, et al. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins[J]. Journal of Biological Chemistry, 2012, 287(11):7956-68. doi: 10.1074/jbc.M111.279331
[15] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408. doi: 10.1006/meth.2001.1262
[16] Zang D, Wang C, Ji X, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities[J]. Plant Science, 2015, 235:111-121. doi: 10.1016/j.plantsci.2015.02.016
[17] Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009, 1793(6):985-992. doi: 10.1016/j.bbamcr.2008.10.006
[18] Sanyal S K, Kanwar P, Yadav A K, et al. Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses[J]. Plant Science, 2017, 254:48-59. doi: 10.1016/j.plantsci.2016.11.004
[19] Wang M, Gu D, Liu T, et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J]. Plant Molecular Biology, 2007, 65(6):733-746. doi: 10.1007/s11103-007-9238-8
[20] 许园园, 蔺经, 李晓刚, 等.梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析[J].中国农业科学, 2015, 48(4):735-747.
[21] Quan R, Lin H, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4):1415-1431. doi: 10.1105/tpc.106.042291
[22] Pandey G K, Cheong Y H, Kim K N, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis[J]. The Plant Cell, 2004, 16(7):1912-1924. doi: 10.1105/tpc.021311
[23] Wang Z, Liu Q, Wang H, et al. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa[J]. Scientific Reports, 2016, 6:36274. doi: 10.1038/srep36274
[24] Zhang Y, Wang Y, Wang C. Gene overexpression and gene silencing in Birch using an Agrobacterium -mediated transient expression system[J]. Molecular Biology Reports, 2012, 39(5):5537-5541. doi: 10.1007/s11033-011-1357-2
[25] Ji X, Nie X, Liu Y, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiology, 2016, 36(2):193-207.
[26] Yang G, Wang C, Wang Y, et al. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress[J]. Scientific Reports, 2016, 6:18752. doi: 10.1038/srep18752
[27] Yang G, Wang Y, Xia D, et al. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida, improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 117(1):99-112. doi: 10.1007/s11240-014-0424-5
[28] Zhong L, Zhang Y, Liu H, et al. Agrobacterium -mediated transient expression via root absorption in flowering Chinese cabbage[J]. Springerplus, 2016, 5(1):1825. doi: 10.1186/s40064-016-3518-1