[1] Stepien P, Johnson G. N. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: Role of the plastid terminal oxidase as an alternative electron sink[J]. Plant Physiology, 2009, 149(2): 1154-1165. doi: 10.1104/pp.108.132407
[2] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71. doi: 10.1016/S1360-1385(00)01838-0
[3] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
[4] Cheng T L, Chen J H, Zhang J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance[J]. Frontiers in Plant Science, 2015, 6: 30.
[5] 杨 升, 张华新, 刘 涛. 16个树种盐胁迫下的生长表现和生理特性[J]. 浙江农林大学学报, 2012, 29(5):744-754. doi: 10.11833/j.issn.2095-0756.2012.05.018
[6] 张 雪, 贺康宁, 史常青, 等. 盐胁迫对柽柳和白刺幼苗生长与生理特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2017, 45(1):105-111.
[7] 闫永庆, 袁晓婷, 刘 威, 等. 盐胁迫及外源Ca2+对白刺离子吸收、运输的影响[J]. 东北农业大学学报, 2014, 45(3):71-78. doi: 10.3969/j.issn.1005-9369.2014.03.013
[8] 杨秀艳, 张华新, 张 丽, 等. NaCl胁迫对唐古特白刺幼苗生长及离子吸收、运输与分配的影响[J]. 林业科学, 2013, 49(9):7-9.
[9] 闫永庆, 高彦博, 刘 威, 等. 外源Ca2+对盐胁迫下唐古特白刺光合作用影响[J]. 东北农业大学学报, 2016, 47(4):57-64. doi: 10.3969/j.issn.1005-9369.2016.04.008
[10] 范小峰, 杨颖丽, 程转霞. NaCl胁迫下唐古特白刺愈伤组织生理生化变化研究[J]. 干旱地区农业研究, 2009, 27(3):3-5.
[11] 倪建伟, 武 香, 张华新, 等. 3种白刺耐盐性的对比分析[J]. 林业科学研究, 2012, 25(1):48-53. doi: 10.3969/j.issn.1001-1498.2012.01.009
[12] 左凤月, 郝秀芬, 陈占峰, 等. 小果白刺和泡果白刺的耐盐性[J]. 天津农学院学报, 2013(2):11-14. doi: 10.3969/j.issn.1008-5394.2013.02.004
[13] 鲁 艳, 雷加强, 曾凡江, 等. NaCl胁迫对大果白刺幼苗生长和抗逆生理特性的影响[J]. 应用生态学报, 2014, 25(3):711-717.
[14] Tian L, Zhu L M, Cheng T L, et al. Physiological and protein responses in leaves of Nitraria billardieri seedlings to moderate salt stress[J]. Journal of Plant Interactions, 2018, 13: 522-531. doi: 10.1080/17429145.2018.1526979
[15] Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics[J]. International Journal of Plant Genomics, 2008, 2008: 1-12.
[16] Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Research, 2013, 41: 808-815.
[17] Ding M, Hou P, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251-269. doi: 10.1007/s11103-010-9612-9
[18] Liu Q, Tang J, Wang W, et al. Transcriptome analysis reveals complex response of the medicinal/ ornamental halophyte Iris halophila Pall. to high environmental salinity[J]. Ecotoxicology and Environmental Safety, 2018, 165: 250-260. doi: 10.1016/j.ecoenv.2018.09.003
[19] 孙瑞芬, 张艳芳, 郭树春, 等. 基于RNA-Seq技术的盐胁迫向日葵转录组信息分析[J]. 分子植物育种, 2015, 13(12):2736-2742.
[20] Agarwal P K, Gupta K, Lopato S, et al. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance[J]. Journal of Experimental Botany, 2017, 68: 2135-2148. doi: 10.1093/jxb/erx118
[21] 马 婧, 邓 楠, 褚建民, 等. 泡泡刺高通量转录组鉴定及其黄酮类代谢途径初步分析[J]. 林业科学研究, 2016, 29(1):61-66. doi: 10.3969/j.issn.1001-1498.2016.01.009
[22] 赵 航, 贾富强, 张富春, 等. 盐胁迫下盐穗木差异表达基因的转录组信息分析[J]. 生物信息学, 2014, 12(2):90-98. doi: 10.3969/j.issn.1672-5565.2014.02.03
[23] Shi W Y, Du Y T, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19: 4087. doi: 10.3390/ijms19124087
[24] 张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7):835-847.
[25] Qin D D, Wu H Y, Peng H R, et al. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array[J]. BMC Genomics, 2008, 9: 432. doi: 10.1186/1471-2164-9-432