[1] 严 盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用[J]. 昆虫学报, 2008, 51(5):537-544. doi: 10.3321/j.issn:0454-6296.2008.05.014
[2] Madhusudhan V V, Miles P W. Mobility of salivary components as possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid[J]. Entomologia Experimentalis et Applicata, 1998, 86(1): 25-39. doi: 10.1046/j.1570-7458.1998.00262.x
[3] 刘长莉, 卢利霞, 许艳丽, 等. 灰飞虱唾液腺三大解毒酶家族的转录组分析[J]. 昆虫学报, 2013, 56(12):1509-1515.
[4] Stone G N, Cook J M. The structure of cynipid oak galls: patterns in the evolution of an extended phenotype[J]. Proceedings of the Royal Society B: Biological Sciences, 1998, 265(1400): 979-988. doi: 10.1098/rspb.1998.0387
[5] Miller D G, Crespi B. The evolution of inquilinism, host-plant use and mitochondrial substitution rates in Tamalia gall aphids[J]. Journal of Evolutionary Biology, 2003, 16(4): 731-743. doi: 10.1046/j.1420-9101.2003.00567.x
[6] Harris M O, Stuart J J, Mohan M, et al. Grasses and gall midges: plant defense and insect adaptation[J]. Annual Review of Entomology, 2003, 48: 549-577. doi: 10.1146/annurev.ento.48.091801.112559
[7] Wool D. Galling aphids: Specialization, biological complexity, and variation[J]. Annual Review of Entomology, 2004, 49: 175-192. doi: 10.1146/annurev.ento.49.061802.123236
[8] Nathan P. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae[J]. BMC Evolutionary Biology, 2007, 7: 18. doi: 10.1186/1471-2148-7-18
[9] 娄永根, 程家安. 植物的诱导抗虫性[J]. 昆虫学报, 1997, 40(3):320-331. doi: 10.3321/j.issn:0454-6296.1997.03.018
[10] Harmel N, Létocart E, Cherqui A, et al. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae[J]. Insect Molecular Biology, 2008, 17(2): 165-174. doi: 10.1111/j.1365-2583.2008.00790.x
[11] Carolan J C, Fitzroy C I, Ashton P D, et al. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry[J]. Proteomics, 2009, 9(9): 2457-2467. doi: 10.1002/pmic.200800692
[12] 刘 勇, 孙玉诚, 王国红. 植物和刺吸式口器昆虫的诱导防御与反防御研究进展[J]. 应用昆虫学报, 2001, 48(4):1052-1059.
[13] Rao S A, Carolan J C, Wilkinson T L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins[J]. PloS one, 2013, 8(2): e57413. doi: 10.1371/journal.pone.0057413
[14] Yang Z X, Ma L, Francis F, et al. Proteins identified from saliva and salivary glands of the Chinese gall aphid Schlechtendalia chinensis[J]. Proteomics, 2018, 18(9): e1700378. doi: 10.1002/pmic.201700378
[15] 唐翊峰. 角倍蚜瘿外世代的生物学特性研究[D]. 北京: 中国林业科学研究院, 2014.
[16] 马 琳, 杨子祥, 唐翊峰, 等. 角倍蚜唾液的提取和蛋白鉴定[J]. 环境昆虫学报, 2015, 37(2):302-307.
[17] Wang Z H, Ge J Q, Chen H, et al. An insect nucleoside diphosphate kinase (NDK) functions as an effector protein in wheat-Hessian fly interactions[J]. Insect Biochemistry and Molecular Biology, 2018, 100: 30-38. doi: 10.1016/j.ibmb.2018.06.003
[18] 刘 平. 角倍蚜的生态适应性研究[D]. 北京: 中国林业科学研究院, 2014.
[19] 陆 沁, 杨子祥, 吴海霞, 等. 角倍蚜虫瘿的组织学结构与功能解析[J]. 环境昆虫学报, 2018, 40(1):1-10.
[20] Peng Z, Miles P W. Acceptability of catechin and its oxidative condensation products to the rose aphid, Mactosiphum rosae[J]. Entomologia Experimentalis et Applicata, 1988, 47(3): 255-265. doi: 10.1111/j.1570-7458.1988.tb01144.x
[21] Miles P W. Aphid saliva[J]. Biological Reviews, 1999, 74(1): 41-85. doi: 10.1017/S0006323198005271
[22] 殷海娣, 黄翠虹, 薛 堃, 等. 昆虫唾液成分在昆虫与植物关系中的作用[J]. 昆虫学报, 2006, 49(5):843-849. doi: 10.3321/j.issn:0454-6296.2006.05.020
[23] 黄海剑. 褐飞虱唾液蛋白功能及唾液腺在水稻齿叶矮缩病毒传播中的作用机制研究[D]. 浙江: 浙江大学, 2018.
[24] Miles P W, Harrewijn P. Discharge by aphids of soluble secretions into dietary sources[J]. Entomologia Experimentalis et Application, 1991, 59: 123-134. doi: 10.1111/j.1570-7458.1991.tb01495.x
[25] Tjallingii W F, Cherqui A. Aphid saliva and aphid - plant interactions[J]. Experimental and Applied Entomology, 1999, 10: 169-174.
[26] Wang Y C, Tang M, Hao P Y, et al. Penetration into rice tissues by brown plant hopper and fine structure of the salivary sheaths[J]. Entomologia Experimentalis et Applicata, 2008, 129: 295-307. doi: 10.1111/j.1570-7458.2008.00785.x