[1] Singh R, Gautam N, Mishra A, et al. Heavy metals and living systems: An overview[J]. Indian Journal Pharmacology, 2011, 43(3): 246-253. doi: 10.4103/0253-7613.81505
[2] Sánchez-Chardi A, Ribeiro C A O, Nadal J. Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana[J]. Chemosphere, 2009, 76(3): 387-394. doi: 10.1016/j.chemosphere.2009.03.036
[3] Álvarez-Mateos P, Alés-Álvarez F-J, García-Martín J F. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass[J]. Journal of Environmental Management, 2019, 231: 886-895. doi: 10.1016/j.jenvman.2018.10.052
[4] Jiménez-Moraza C, Iglesias N, Palencia I. Application of sugar foam to a pyrite-contaminated soil[J]. Minerals Engineering, 2006, 19(5): 399-406. doi: 10.1016/j.mineng.2005.10.011
[5] 施 翔, 陈益泰, 王树凤, 等. 废弃尾矿库15种植物对重金属Pb、Zn的积累和养分吸收[J]. 环境科学, 2012, 33(6):2021-2027.
[6] Midhat L, Ouazzani N, Hejjaj A. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential[J]. Ecotoxicology and Environmental Safety, 2019, 169: 150-160. doi: 10.1016/j.ecoenv.2018.11.009
[7] Mendez M O, Maier R M. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology[J]. Environmental Health Perspectives, 2008, 116(3): 278-283. doi: 10.1289/ehp.10608
[8] Zhou L Y, Zhao Y, Wang S F, et al. Lead in the soil-mulberry (Morus alba L.)-silkworm (Bombyx mori) food chain: translocation and detoxification[J]. Chemosphere, 2015, 128: 171-177. doi: 10.1016/j.chemosphere.2015.01.031
[9] Salam M M A, Kaipiainen E, Mohsin M, et al. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals[J]. Journal of Environmental Management, 2016, 183: 467-477. doi: 10.1016/j.jenvman.2016.08.082
[10] 蔡志全, 阮宏华, 叶镜中. 栓皮栎林对城郊重金属元素的吸收和积累[J]. 南京林业大学学报: 自然科学版, 2001, 25(1):18-22.
[11] 施 翔, 王树凤, 陈益泰, 等. 5种栎树幼苗对铅锌尾矿砂的耐性与植被恢复前景[J]. 应用生态学报, 2019, 30(12):4091-4098.
[12] 冷华妮, 陈益泰, 段红平, 等. 磷胁迫对不同种源枫香生长及氮、磷吸收利用率的影响[J]. 应用生态学报, 2009, 20(4):754-760.
[13] Malar S, Manikandan R, Favas P J C, et al. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2014, 108: 249-257. doi: 10.1016/j.ecoenv.2014.05.018
[14] 李金波, 李诗刚, 宋桂龙, 等. 砷胁迫对黑麦草根系形态及养分吸收的影响[J]. 草业科学, 2018, 35(6):1385-1392. doi: 10.11829/j.issn.1001-0629.2017-0434
[15] 林 磊, 周志春. 水分和磷素对木荷不同种源苗木生长和磷效率的影响[J]. 应用生态学报, 2009, 20(11):2617-2623.
[16] 赵学强, 沈仁芳. 提高铝毒胁迫下植物氮磷利用的策略分析[J]. 植物生理学报, 2015, 51(10):1583-1589.
[17] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
[18] Zhao X L, Zheng L Y, Xia X L, et al. Responses and acclimation of Chinese cork oak (Quercus variabilis Bl.) to metal stress: the inducible antimony tolerance in oak trees[J]. Environmental Science and Pollution Research, 2015, 22(15): 11456-11466. doi: 10.1007/s11356-015-4304-2
[19] Luo Z B, He J L, Polle A et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34(6): 1131-1148. doi: 10.1016/j.biotechadv.2016.07.003
[20] de Souza S C R, de Andrade S A L, de Souza L A, et al. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage[J]. Journal of Environmental Management, 2012, 110: 299-307. doi: 10.1016/j.jenvman.2012.06.015
[21] 王 君, 严小莉, 李 凌. 不同种源麻栎幼苗对Cd2+-Pb2+复合污染的吸收累积特性[J]. 林业科学, 2014, 50(7):23-30.
[22] Evangelou M W H, Robinson B H, Gunthardt-Goerg M S, et al. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production[J]. International Journal of Phytoremediation, 2013, 15(1): 77-90. doi: 10.1080/15226514.2012.670317
[23] Kabata-Pendias A. Trace element in soils and plants[M]. Fourth Edition.Boca Raton, Florida: CRC Press, 2011: 105.
[24] Chen D Q, Zhang H, Wang Q L, et al. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza)[J]. Journal of Hazardous Materials, 2020, 395: 122672. doi: 10.1016/j.jhazmat.2020.122672
[25] Mendez M O, Maier R M. Phytoremediation of mine tailings in temperate and arid environments[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(1): 47-59. doi: 10.1007/s11157-007-9125-4