[1] Liu S, Bondlamberty B, Hicke J A, et al . Simulating the impacts of disturbances on forest carbon cycling in North America:processes, data, models, and challenges[J]. Journal of Geophysical Research Biogeosciences, 2015, 116(G4):127-134.
[2] 施志娟, 白彦锋, 孙睿, 等.杉木人工林伐后2种恢复模式碳储量的比较[J].林业科学研究, 2017, 30(2):214-221
[3] 余超, 王斌, 刘华, 等.中国森林植被净生产量及平均生产力动态变化分析[J].林业科学研究, 2014, 27(4):542-550
[4] Gray A N, Whittier T R. Carbon stocks and changes on Pacific Northwest national forests and the role of disturbance, management, and growth[J]. Forest Ecology and Management, 2014, 328:167-178. doi: 10.1016/j.foreco.2014.05.015
[5] Zhou T, Shi P, Jia G, et al . Nonsteady state carbon sequestration in forest ecosystems of China estimated by data assimilation[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(4):1369-1384. doi: 10.1002/jgrg.20114
[6] 方江平.西藏南伊沟林芝云杉林生物量与生产力研究[J].林业科学研究, 2012, 25(5):582-589. doi: 10.3969/j.issn.1001-1498.2012.05.007
[7] Piao S, Cui M, Chen A, et al . Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12):1599-1608. doi: 10.1016/j.agrformet.2011.06.016
[8] Jorgensen W L, Gao J. Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution[J]. Journal of the American Chemical Society, 1988, 110(13):4212-4216. doi: 10.1021/ja00221a020
[9] Monteith J L. Solar radiation and productivity in tropical ecosystems[J]. Journal of Apply Ecology, 1972, 9(3):747-766. doi: 10.2307/2401901
[10] Prince S D. A model of regional primary production for use with coarse resolution satellite data[J]. International Journal of Remote Sensing, 1991, 12(6):1313-1330. doi: 10.1080/01431169108929728
[11] Potter C S, Randerson J T, Field C B, et al . Terrestrial ecosystem production:A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4):811-841. doi: 10.1029/93GB02725
[12] Ruimy A, Dedieu G, Saugier B. TURC:A diagnostic model of continental gross primary productivity and net primary productivity[J]. Global Biogeochemical Cycles, 1996, 10(2):269-285. doi: 10.1029/96GB00349
[13] Running S W, Glassy J M, Thornton P E. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) Algorithm Theoretical Basis Document[M]. Maryland. April, 1999.
[14] Veroustraete F, Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3):376-399. doi: 10.1016/S0034-4257(02)00043-3
[15] Bonan G B. Sensitivity of a GCM simulation to inclusion of inland water surfaces[J]. Journal of Chemical Ecology, 1995, 8(11):2691-2704.
[16] Fensholt R, Sandholt I, Stisen S, et al . Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor[J]. Remote Sensing of Environment, 2006, 101(2):212-229. doi: 10.1016/j.rse.2005.11.013
[17] Melillo J M, Mcguire A D, Kicklighter D W, et al . Global climate change and terrestrial net primary production[J]. Nature, 1993, 363(6426):234-240. doi: 10.1038/363234a0
[18] Foley J A. The sensitivity of the terrestrial biosphere to climatic change:A simulation of the Middle Holocene[J]. Global Biogeochemical Cycles, 1994, 8(4):505-525. doi: 10.1029/94GB01636
[19] Melillo J M. Terrestrial biotic responses to environmental change and feedbacks to climate[J]. Climate Change, 1995, 13(3):445-481.
[20] Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography model[J]. Global Biogeochemical Cycles, 1995, 9(4):471-490. doi: 10.1029/95GB02432
[21] Haxeltine A, Prentice I C. BIOME3:An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types[J]. Global Biogeochemical Cycles, 1996, 10(4):693-709. doi: 10.1029/96GB02344
[22] Foley, Simon, Gong, et al . A security model of dynamic labeling providing a tiered approach to verification[J]. Proceedings of the IEEE Symposium on Security & Privacy, 1996:142-153.
[23] Sellers P J, Los S O, Tucker C J, et al . A revised land surface parameterization (SiB2) for atmospheric GCMS. Part Ⅱ:The generation of global fields of terrestrial biophysical parameters from satellite data.[J]. Journal of Climate, 1996, 9(4):706-737. doi: 10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2
[24] Liu J, Chen J M, Cihlar J, et al . A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Rem Sens Environ, 1997, 62(2):158-175. doi: 10.1016/S0034-4257(97)00089-8
[25] Thornton P E, Law B E, Gholz H L, et al . Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural & Forest Meteorology, 2002, 113(1-4):185-222.
[26] Chiesi M, Maselli, Moriondo, et al . Application of BIOME-BGC to simulate Mediterranean forest processes[J]. Ecological Modelling, 2007, 206(1):179-190.
[27] Chiesi M, Fibbi L, Genesio L, et al . Integration of ground and satellite data to model Mediterranean forest processes[J]. International Journal of Applied Earth Observation & Geoinformation, 2011, 13(3):504-515.
[28] Yan M, Tian X, Li Z Y, et al . A long-term simulation of forest carbon fluxes over the Qilian Mountains[J]. International Journal of Applied Earth Observations & Geoinformation, 2016, 52:515-526.
[29] Lu L, Li X, Veroustraete F, et al . Analysing the forcing mechanisms for net primary productivity changes in the Heihe River Basin, north-west China[J]. International Journal of Remote Sensing, 2009, 30(3):793-816. doi: 10.1080/01431160802438530
[30] 刘世荣, 徐德应, 王兵.气候变化对中国森林生产力的影响Ⅱ.中国森林第一性生产力的摸拟[J].林业科学研究, 1994, 7(4):425-430 doi: 10.3321/j.issn:1001-1498.1994.04.011
[31] 刘世荣, 徐德应, 王兵.气候变化对中国森林生产力的影响Ⅰ.中国森林现实生产力的特征及地理分布格局[J].林业科学研究, 1993, 6(6):633-642 doi: 10.3321/j.issn:1001-1498.1993.06.009
[32] Pan Y, Birdsey R A, Fang J, et al . A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993. doi: 10.1126/science.1201609
[33] Tian X. Modeling of forest above-Ground biomass and evapotranspiration[D]. Enschede: University of Twente, 2015.
[34] Ouyang S, Wang X, Wu Y, et al . Contrasting responses of net primary productivity to inter-annual variability and changes of climate among three forest types in northern China[J]. Journal of Plant Ecology, 2014, 7(3):309-320. doi: 10.1093/jpe/rtt066
[35] Berthelot M, Friedlingstein P, Ciais P, et al . How uncertainties in future climate change predictions translate into future terrestrial carbon flux[J]. Global Change Biology, 2010, 11(6):959-970.
[36] Zhang G, Kang Y, Han G, et al . Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia[J]. Global Change Biology, 2011, 17(1):377-389. doi: 10.1111/j.1365-2486.2010.02237.x
[37] 吴刚, 冯宗炜.中国寒温带-温带落叶松林群落生物量的研究概述[J].东北林业大学学报, 1995, 23(1):95-101.
[38] 董利虎, 李凤日, 贾炜玮, 等.含度量误差的黑龙江省主要树种生物量相容性模型[J].应用生态学报, 2011, 22(10):2653-2661.
[39] 代武君.大兴安岭典型林分生物量生产力研究[D].哈尔滨: 东北林业大学, 2015
[40] Farquhar G D, Von C S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. doi: 10.1007/BF00386231
[41] 张瑜.黄土高原降水梯度带典型植物适宜盖度空间分布特征[D].西安: 西北农林科技大学, 2014.
[42] 方超.模拟升温和氮沉降对黄土髙原半干旱区苜蓿草地净初级生产力和土壤呼吸的影响[D].兰州: 兰州大学, 2015.
[43] Maselli F, Chiesi M, Fibbi L, et al . Integration of remote sensing and ecosystem modelling techniques to estimate forest net carbon uptake[J]. International Journal of Remote Sensing, 2008, 29(8):2437-2443. doi: 10.1080/01431160801894857
[44] Raich J W, Rastetter E B, Melillo J M, et al . Potential Net Primary Productivity in South America:Application of a Global Model[J]. Ecological Applications, 1991, 1(4):399-429.. doi: 10.2307/1941899
[45] 闫淑君, 洪伟, 吴承祯, 等.福建近41年气候变化对自然植被净第一性生产力的影响[J].山地学报, 2001, 19(6).227-231.
[46] Su H X, Sang W G. Simulations and analysis of netprimary productivity in Quercus liaotungensis forest of Donglingshan Mountain range in response to different climate change scenarios[J]. Acta Botanica Sinica, 2004, 46(11):1281-1291.
[47] 曾慧卿, 刘琪璟, 冯宗炜, 等.基于BIOME-BGC模型的红壤丘陵区湿地松( Pinus elliottii )人工林GPP和NPP[J].生态学报, 2008, 1(11):5314-5321. doi: 10.3321/j.issn:1000-0933.2008.11.013
[48] 林思美, 黄华国.基于3PGS-MTCLIM模型模拟根河林区火后植被净初级生产力恢复及其影响因子[J].应用生态学报, 2018, 29(11):3712-3722.
[49] 李政源.内蒙古大兴安岭林区天保工程建设成效分析[J].内蒙古林业调查设计, 2012(2):12-13. doi: 10.3969/j.issn.1006-6993.2012.02.005