[1] 李 明, 李长生, 赵传志, 等. 植物SPL转录因子研究进展[J]. 植物学报, 2013, 48(1):107-116.
[2] 雷凯健, 刘 浩. 植物调控枢纽miR156及其靶基因SPL家族研究进展[J]. 生命的化学, 2016, 36(1):13-20.
[3] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J]. Cell, 2002, ; 110(4): 513-520.
[4] Wang H, Wang H. The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits[J]. Molecular Plant, 2015, 8(5): 677-688. doi: 10.1016/j.molp.2015.01.008
[5] Guo A-Y, Zhu Q-H, Gu X, et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family[J]. Gene., 2008, 418(1-2): 1-8. doi: 10.1016/j.gene.2008.03.016
[6] Schwarz S, Grande AV, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1-2): 183-195. doi: 10.1007/s11103-008-9310-z
[7] Xing S, Salinas M, Höhmann S, et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010, 22(12): 3935-3950.
[8] Xu M, Hu T, Zhao J, et al. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8): e1006263. doi: 10.1371/journal.pgen.1006263
[9] Cui L-G, Shan J-X, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. the Plant Journal, 2014, 80(6): 1108-1117. doi: 10.1111/tpj.12712
[10] Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany, 2009, 103(1): 29-38. doi: 10.1093/aob/mcn205
[11] Ferreira e Silva GF, Silva EM, Azevedo M da S, et al. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. the Plant Journal, 2014, 78(4): 604-618. doi: 10.1111/tpj.12493
[12] Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4): 1512-1522. doi: 10.1105/tpc.111.084525
[13] Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. doi: 10.1038/ng.591
[14] Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, ; 42(6): 545-549.
[15] Sun G, Stewart C N Jr., Xiao P, et al. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress[J]. PLoS One, 2012, 7(3): e32017. doi: 10.1371/journal.pone.0032017
[16] Wang Y, Wang Z, Amyot L, et al. Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus[J]. Molecular Genetics and Genomics, 2015, 290(2): 471-484. doi: 10.1007/s00438-014-0931-4
[17] Wang J-W, Czech B, Weigel D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738-749. doi: 10.1016/j.cell.2009.06.014
[18] Wang Y, Wu F, Bai J, et al. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage[J]. Plant Biotechnology Journal, 2014, 12(3): 312-321. doi: 10.1111/pbi.12138
[19] Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759. doi: 10.1016/j.cell.2009.06.031
[20] Yu N, Cai W-J, Wang S, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(7): 2322-2335. doi: 10.1105/tpc.109.072579
[21] Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes & Development, 2010, 24(23): 2678-2692.
[22] Long J M, Liu C Y, Feng M Q, et al. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus[J]. Journal of Experimental Botany, 2018, 69(12): 2979-2993. doi: 10.1093/jxb/ery132
[23] Zhang J H, Zhang S G, Li S G, et al. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis)[J]. Plant Cell, Tissue Organ Culture, 2014, 116(3): 361-370. doi: 10.1007/s11240-013-0412-1
[24] Zhang J, Zhang S, Han S, et al. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in larches (Larix leptolepis)[J]. PLoS One, 2013, 8(12): e81452. doi: 10.1371/journal.pone.0081452
[25] Zhang L, Li W, Xu H, et al. Cloning and characterization of four differentially expressed cDNAs encoding NFYA homologs involved in responses to ABA during somatic embryogenesis in Japanese larch (Larix leptolepis)[J]. Plant Cell, Tissue Organ Culture, 2014, 117(2): 293-304. doi: 10.1007/s11240-014-0440-5
[26] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis[J]. Planta, 2012, 236(2): 647-657. doi: 10.1007/s00425-012-1643-9
[27] Li W F, Zhang S G, Han S Y, et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr.[J]. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131-136. doi: 10.1007/s11240-012-0233-7
[28] Li S, Li W, Han S, et al. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos[J]. Gene, 2013, 522(2): 177-183. doi: 10.1016/j.gene.2013.03.117
[29] Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development[J]. the Plant Journal, 2007, 51(6): 1077-1098. doi: 10.1111/j.1365-313X.2007.03208.x
[30] Zhang H, Zhang L, Han J, et al. The nuclear localization signal is required for the function of squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis[J]. Plant Molecular Biology, 2019, 100(6): 571-578. doi: 10.1007/s11103-019-00863-5
[31] Zhang L-f, Li W-f, Han S-y, et al. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis)[J]. Gene, 2013, 529(1): 150-158. doi: 10.1016/j.gene.2013.07.076
[32] Gandikota M, Birkenbihl RP, Höhmann S, et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. the Plant Journal., 2007, 49(4): 683-693. doi: 10.1111/j.1365-313X.2006.02983.x
[33] 张立峰. 落叶松体细胞胚TCTPNFYA基因克隆及其在ABA调控过程中的表达机制[D]. 北京: 中国林业科学研究院, 2014.
[34] Zhang S, Han S, Yang W, et al. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 100(1): 21-29. doi: 10.1007/s11240-009-9612-0
[35] Yin H, Hong G, Li L, et al. miR156/SPL9 Regulates Reactive Oxygen Species Accumulation and Immune Response in Arabidopsis thaliana[J]. Phytopathology, 2019, 109(4): 632-642. doi: 10.1094/PHYTO-08-18-0306-R
[36] Jin L, Yarra R, Zhou L, et al. miRNAs as Key Regulators Via Targeting the Phytohormone Signaling Pathways During Somatic Embryogenesis of Plants[J]. 3 Biotech, 2020, 10: 495.
[37] Xu J. ATACing Somatic Embryogenesis[J]. Developmental Cell, 2020, 54(6): 689-690. doi: 10.1016/j.devcel.2020.09.008
[38] Wójcik AM, Wójcikowska B, Gaj MD. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants[J]. International Journal of Molecular Sciences, 2020, 21(4): 1333. doi: 10.3390/ijms21041333
[39] Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants[J]. International Journal of Molecular Sciences, 2020, 21(7): 2307. doi: 10.3390/ijms21072307
[40] Zhang L-f, Lan Q, Han S-y, et al. A GH3-like Gene, LaGH3, Isolated From Hybrid Larch (Larix leptolepis × Larix olgensis) is Regulated by Auxin and Abscisic Acid During Somatic Embryogenesis[J]. Trees, 2019, 33(12): 1723-1732.
[41] Armenta Medina A, Lepe Soltero D, Xiang D, et al. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote[J]. Developmental Biology, 2017, 431(2): 145-151. doi: 10.1016/j.ydbio.2017.09.009
[42] Plotnikova A, Kellner MJ, Schon MA, et al. MicroRNA Dynamics and Functions During Arabidopsis Embryogenesis[J]. Plant Cell, 2019, 31(12): 2929-2946. doi: 10.1105/tpc.19.00395
[43] 张俊红, 张守攻, 吴 涛, 等. 落叶松体胚发育中5个miRNA前体与成熟体的表达[J]. 植物学报, 2012, 47(5):462-473.