• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Community Biomass and Understory Plant Diversity under Different Vegetation Restoration Models of Karst Region in Southwest Guangxi

  • Corresponding author: LU Li-hua; 
  • Received Date: 2016-07-01
  • Objective To investigate the community biomass and understory plant species diversity in four different restoration models in karst region of Southwest Guangxi in order to accumulate information for biodiversity conservation and the restoration of ecological function in the region. Method Four different restoration models were selected as the research object, and the understory plant species diversity were studied by samples, the ground and underground biomass of shrub layer and herb layer was studied by the harvest method; the arbor layer biomass were studied by using allometic models and the ratio of root and stem recommended by IPCC. Result 85 species belonging to 81 genera of 47 families were recorded, among of which, 50 species belonging to 46 genera of 25 families were shrubs and 35 species belonging to 35 genera of 22 families were herbs. The biomass of different vegetation restoration models showed that the highest was the natural restoration forests (166.66 t·hm-2) followed by Zenia insignis forest (48.61 t·hm-2), Dendrocalamus minor forest (36.54 t·hm-2), and the lowest was the shrub grassland (0.96 t·hm-2). Conclusion The richness of shrub species showed no significant difference among different models, the highest richness was the shrub grassland (16 species), and then the Zenia insignis forest (15 species), the lowest was the natural restoration forests (12 species). The highest in herb was the Zenia insignis forest (12 species), then the shrub grassland (10 species), and the lowest was the natural restoration forests (4 species). In the tree layer, the biomass of different components of the natural restoration forest was significant different with Zenia insignis and Dendrocalamus minor forests (P < 0.05). The aboveground biomass in the shrub-grassland was significant different with that of the others (P < 0.05). The litter biomass was not significant (P < 0.05). The biomass of herb layer was higher than that of the shrub layer in the Zenia insignis and Dendrocalamus minor forests; but in natural restoration forest and shrub-grassland, it showed the opposite. The precaution management for four different restoration models in the karst area of Southwest Guangxi is put forward based on this result.
  • 加载中
  • [1]

    Bengtsson J. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function[J]. Applied Soil Ecology, 1998, 10(3): 191-199. doi: 10.1016/S0929-1393(98)00120-6
    [2]

    Hedlund K, Santa Regina I, Van der Putten W H, et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncrasy or above-belowground time lags[J]. Oikos, 2003, 103(1): 45-58. doi: 10.1034/j.1600-0706.2003.12511.x
    [3]

    Cardinale B J, Wright J P, Cadotte M W, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity[J]. Proceedings of the national academy of sciences, 2007, 104(46): 18123-18128. doi: 10.1073/pnas.0709069104
    [4]

    Cardinale B J, Venail P, Gross K, et al. Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability[J]. Functional Ecology, 2015, 29(12): 1607-1610. doi: 10.1111/1365-2435.12540
    [5]

    Yuan F, Wu J, Li A, et al. Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: Before and after a biodiversity removal experiment[J]. Landscape Ecology, 2015, 30(9): 1737-1750. doi: 10.1007/s10980-015-0154-z
    [6] 杨利民, 周广胜, 李建东. 松嫩平原草地群落物种多样性与生产力关系的研究[J]. 植物生态学报, 2002, 26(5): 589-593. doi: 10.3321/j.issn:1005-264X.2002.05.011

    [7] 王伯荪, 王昌伟, 彭少麟. 生物多样性刍议[J]. 中山大学学报: 自然科学版, 2005, 44(6): 68-70.

    [8] 蔡道雄, 卢立华, 贾宏炎, 等. 封山育林对杉木人工林林下植被物种多样性恢复的影响[J]. 林业科学研究, 2007, 20(3): 319-327 doi: 10.3321/j.issn:1001-1498.2007.03.005

    [9]

    Kume A, Satomura T, Tsuboi N, et al. Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora[J]. Forest Ecology & Management, 2003, 176(1-3): 195-203.
    [10]

    Chastain R A, Currie W S, Townsend P A. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests[J]. Forest Ecology & Management, 2006, 231(1-3): 63-77.
    [11]

    Gilliam F S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems[J]. Bioscience, 2007, 57(57): 845-858.
    [12] 任海, 彭少麟. 恢复生态学导论[M]. 北京: 科学出版社, 2001: 19

    [13]

    Nagaraja B C, Somashekar R K, Raj M B. Tree species diversity and composition in logged and unlogged rainforest of Kudremukh National Park, South India[J]. Journal of Environmental Biology, 2005, 26(4): 627-634.
    [14] 贺庆棠, 陆佩玲. 中国岩溶山地石漠化问题与对策研究[J]. 北京林业大学学报, 2006, 28(1): 117-120. doi: 10.3321/j.issn:1000-1522.2006.01.024

    [15] 苏维词. 中国西南岩溶山区石漠化治理的优化模式及对策[J]. 水土保持学报, 2002, 16(5): 24-27. doi: 10.3321/j.issn:1009-2242.2002.05.007

    [16] 中国科学院学部. 关于推进西南岩溶地区石漠化综合治理的若干建议[J]. 地球科学进展, 2003, 18(4): 489-492. doi: 10.3321/j.issn:1001-8166.2003.04.001

    [17] 曹建华, 蒋忠诚, 杨德生, 等. 我国西南岩溶区土壤侵蚀强度分级标准研究[J]. 中国水土保持科学, 2008, 6(6): 1-7. doi: 10.3969/j.issn.1672-3007.2008.06.001

    [18] 周蕊, 方荣杰. 西南岩溶区的水土保持措施体系构建[J]. 中国水土保持, 2012(3): 7-9. doi: 10.3969/j.issn.1000-0941.2012.03.003

    [19] 王巨, 谢世友, 戴国富. 西南岩溶区土壤生态系统退化研究[J]. 中国农学通报, 2011, 27(32): 181-185.

    [20] 温远光, 雷丽群, 朱宏光, 等. 广西马山岩溶植被年龄序列的群落特征[J]. 生态学报, 2013, 33(18): 5723-5730.

    [21] 朱宏光, 蓝嘉川, 刘虹, 等. 广西马山岩溶次生林群落生物量和碳储量[J]. 生态学报, 2015, 35(8): 2616-2621.

    [22] 雷丽群. 广西马山岩溶植被不同演替阶段的群落结构与环境因子的关系[D]. 南宁: 广西大学, 2014.

    [23] 李明辉, 彭少麟, 申卫军, 等. 景观生态学与退化生态系统恢复[J]. 生态学报, 2003, 23(8): 1622-1628. doi: 10.3321/j.issn:1000-0933.2003.08.021

    [24] 张万富. 天等县志[M]. 南宁: 广西人民出版社1991.

    [25] 刘灿然, 马克平. 生物群落多样性的测度方法[J]. 生态学报, 1997, 17(6): 601-610. doi: 10.3321/j.issn:1000-0933.1997.06.003

    [26] 马克平, 刘玉明. 生物群落多样性的测度方法: Ⅰα多样性的测度方法(下)[J]. 生物多样性, 1994, 02(3): 162-168. doi: 10.3321/j.issn:1005-0094.1994.03.007

    [27] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001.

    [28] 汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472.

    [29]

    Paustian K.; Ravindranath N.H.; Amstel A.R. van. IPCC 2006 Guidelines for National Greenhouse Gas Inventories[R]. Kanagawa, JAPANE: The Institute for Global Environmental Strategies (IGES), 2006
    [30] 祝燕, 赵谷风, 张俪文, 等. 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J]. 植物生态学报, 2008, 32(2): 262-273. doi: 10.3773/j.issn.1005-264x.2008.02.004

    [31] 叶万辉, 曹洪麟, 黄忠良, 等. 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究[J]. 植物生态学报, 2008, 32(2): 274-286. doi: 10.3773/j.issn.1005-264x.2008.02.005

    [32] 兰国玉, 胡跃华, 曹敏, 等. 西双版纳热带森林动态监测样地——树种组成与空间分布格局[J]. 植物生态学报, 2008, 32(2): 287-298. doi: 10.3773/j.issn.1005-264x.2008.02.006

    [33] 王德炉, 朱守谦, 黄宝龙. 贵州喀斯特区石漠化过程中植被特征的变化[J]. 南京林业大学学报: 自然科学版, 2003, 27(3): 26-30. doi: 10.3969/j.issn.1000-2006.2003.03.006

    [34] 俞筱押, 李玉辉, 马遵平. 云南石林喀斯特小生境木本植物多样性特征[J]. 山地学报, 2007, 25(4): 438-447. doi: 10.3969/j.issn.1008-2786.2007.04.009

    [35] 刘方炎, 李昆, 张春华, 等. 金沙江干热河谷植被恢复初期的群落特征[J]. 南京林业大学学报: 自然科学版, 2007, 31(6): 129-132. doi: 10.3969/j.issn.1000-2006.2007.06.031

    [36] 司彬, 姚小华, 任华东, 等. 滇东喀斯特植被恢复演替过程中物种多样性研究[J]. 西南大学学报: 自然科学版, 2009, 31(1): 132-139.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(3856) PDF downloads(612) Cited by()

Proportional views

Community Biomass and Understory Plant Diversity under Different Vegetation Restoration Models of Karst Region in Southwest Guangxi

    Corresponding author: LU Li-hua; 
  • 1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
  • 2. Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600, Guangxi, China

Abstract:  Objective To investigate the community biomass and understory plant species diversity in four different restoration models in karst region of Southwest Guangxi in order to accumulate information for biodiversity conservation and the restoration of ecological function in the region. Method Four different restoration models were selected as the research object, and the understory plant species diversity were studied by samples, the ground and underground biomass of shrub layer and herb layer was studied by the harvest method; the arbor layer biomass were studied by using allometic models and the ratio of root and stem recommended by IPCC. Result 85 species belonging to 81 genera of 47 families were recorded, among of which, 50 species belonging to 46 genera of 25 families were shrubs and 35 species belonging to 35 genera of 22 families were herbs. The biomass of different vegetation restoration models showed that the highest was the natural restoration forests (166.66 t·hm-2) followed by Zenia insignis forest (48.61 t·hm-2), Dendrocalamus minor forest (36.54 t·hm-2), and the lowest was the shrub grassland (0.96 t·hm-2). Conclusion The richness of shrub species showed no significant difference among different models, the highest richness was the shrub grassland (16 species), and then the Zenia insignis forest (15 species), the lowest was the natural restoration forests (12 species). The highest in herb was the Zenia insignis forest (12 species), then the shrub grassland (10 species), and the lowest was the natural restoration forests (4 species). In the tree layer, the biomass of different components of the natural restoration forest was significant different with Zenia insignis and Dendrocalamus minor forests (P < 0.05). The aboveground biomass in the shrub-grassland was significant different with that of the others (P < 0.05). The litter biomass was not significant (P < 0.05). The biomass of herb layer was higher than that of the shrub layer in the Zenia insignis and Dendrocalamus minor forests; but in natural restoration forest and shrub-grassland, it showed the opposite. The precaution management for four different restoration models in the karst area of Southwest Guangxi is put forward based on this result.

  • 在当前可持续发展和生态环境改善日益重视的社会背景与发展趋势下,作为生态系统最重要功能的生物量和生物多样性研究已成为生态学研究中的热点[1-5]。生物量是生态系统生产力基础和功能的主要表现形式[6]。物种多样性与群落的功能过程密切相关,是生物多样性最为基础和关键的层次[7]。研究表明,林下植被作为森林生态系统的一个重要组成部分,在促进养分循环和维护森林立地质量方面起着重要作用[8-11]。对于退化生态系统恢复成功的标准,物种多样性、群落生物量是其中非常重要的评价指标[12-13]。因此,开展不同区域、不同树种、不同模式森林生态系统群落生物量及物种多样性的研究仍具有必要性和紧迫性。

    西南岩溶区的位置非常特殊,它处于长江、珠江、澜沧江等水系的中上游,其脆弱的生态环境不仅威胁下游地区生态系统的安全,还严重制约着西南地区经济社会的可持续发展。岩溶植被的恢复与重建成为我国西南岩溶地区退化生态系统恢复与重建研究的难点与重点[14]。目前,对西南岩溶区开展的研究主要集中在石漠化治理[15-16]、水土流失[17-18]、土壤[17, 19]等方面,但对于岩溶生态系统植物多样性及生物量研究报道较少,已有工作主要针对不同年龄系列或不同演替阶段的群落[20-22],对不同土地利用方式或恢复模式的生物多样性、生物量的变化缺乏探讨。岩溶区生态重建或生态恢复的关键是森林植被的重建与恢复,岩溶区植被恢复的主要驱动力是植物的多样性[23],而植物多样性的恢复是退化生态系统恢复与重建效果的重要考核指标,不同植被恢复模式产生的生态效益不同,因此,对该区不同恢复模式下植物群落生物量及物种多样性的研究显得尤为重要。本文以桂西南岩溶区4种不同恢复模式为研究对象,对其群落生物量及林下植被多样性进行研究,拟揭示该区不同恢复模式群落生物量及林下植物多样性的特点,有助于科学评价植被恢复效果,为该区域的生物多样性保护、生态功能恢复效果评价提供理论依据和基础数据。

1.   研究区概况
  • 研究区位于广西西南部的天等县(107°11′E,23°09′N),属南亚热带季风气候。全县面积2 159.25 km2,以低山丘陵为主,山地面积1 696.42 km2,占总面积的77.98%,其中,土山占总面积的22.60%;石灰岩山地占总面积的41.50%;硅质灰岩山地占总面积的10.31%;半土半石山占总面积的3.57%。全县地势西南高东北低,最高海拔1 073.7 m,最低海拔263 m。春末至初秋多受偏南气流影响,气温高,湿度大,降雨量多。冬季受北方寒潮影响,气温偏低,湿度小,雨量少。年平均太阳总辐射量为100.6 Kcal·cm-2,年均气温为20.5℃,年均降水量1 459.1 mm。土壤主要由第四纪红土、砂页岩、河流冲积、洪积、棕色石灰土、紫色岩、硅质岩等7种母质发育而成,其中,砂页岩母质最多,占59.7%,次为硅质岩母质、棕色石灰土母质,各占18.8%和17.9%[24]

2.   研究方法
  • 2015年5月,在林分踏查的基础上,选取海拔、坡度、坡向等环境条件基本一致的地块设置4种恢复模式样地,4种恢复模式分别为:R1吊丝竹林,R2任豆林,R3灌草坡,R4自然恢复林。在每种恢复模式样地中各设置3个面积20 m×30 m样方,在样方的4个角及中心点设置面积5 m ×5 m的灌木、草本样方5个;在样方内随机设置2 m ×2 m的灌草生物量收获样方3个,1 m ×1 m的凋落物样方3个。共完成乔木样方12个,灌木样方60个,草本样方60个。

    调查内容包括样地内乔木的种类、高度、胸径;灌木、草本的种类、株数、高度、盖度。采用样方收获法,测定灌木层与草本层的地上和地下生物量及凋落物层现存量。各组分所取样品带回实验室,称鲜质量后65℃烘干至恒质量,并计算含水率。烘干样品经粉碎、过筛后装瓶,用于有机碳含量的测定。

    样地号
    Sample No.
    恢复模式
    Recovery mode
    坡度
    Gradient/(°)
    坡向
    Aspect
    海拔
    altitude/m
    R1 吊丝竹林
    The Dendrocalamus minor forest
    21±2 东南 340±4
    R2 任豆林The Zenia insignis forest 18±3 东南 415±10
    R3 灌草坡The shrub grassland 20±5 东南 440±7
    R4 自然恢复林
    The natural restoration forests
    16±2 东南 515±2
    注: 表中数据为平均值±标准差。
    Note: data in the table as mean ± standard deviation.

    Table 1.  Sample information

  • 物种多样性指标采用物种丰富度S、Shannon-wiener指数、Simpson指数、Jsw均匀度指数,其具体计算方法见文献[25~26];重要值(IV)采用宋永昌[27]方法计算。根据物种多样性指数计算公式对乔木层、灌木层及草本层计算得到各样地的植物多样性指数。

  • 目前,对生物量的研究多采用直接收获法,考虑到当地不准采伐,因此,本研究利用汪珍川等[28]建立的广西主要树种(组)异速生长模型来估算乔木层的地上生物量,并参考IPCC根茎比来量化乔木的地下生物量[29]

  • 样地的生物量和多样性指数数据用Excel 2010统计,基于SPSS 18.0,采用单因素ANOVA进行方差分析。

3.   结果与分析
  • 本研究共调查林下植物85种,隶属于46科,81属,其中,灌木植物25科,46属,50种;草本植物21科,35属,35种。样地灌木层植物主要由番石榴(Psidium guajava Linn.)、红背山麻杆(Alchornea trewioides (Benth.) Muell. Arg.)、潺槁木姜子(Litsea glutinosa (Lour.) C. B. Rob.)、灰毛浆果楝(Cipadessa cinerascens (Pellegr.) Hand.-Mazz.)、构棘(Cudrania cochinchinensis (Lour.) Kudo et Masam.)等组成;草本层草本植物主要由水蔗草(Apluda mutica Linn.)、五节芒(Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut.)、肾蕨(Nephrolepis auriculata (L.) Trimen)、艾草(Artemisia argyi Levl. et Van.)等组成。

  • 表 2表明:不同灌木层物种丰富度(S)的差异不显著,灌草坡的最高(S=16),任豆林的次之(S=15),自然恢复林的最低(S=12);Shannon-wiener指数、Simpson指数、Jsw均匀度指数均为吊丝竹林>灌草坡>任豆林>自然恢复林。灌草坡与自然恢复林的Shannon-wiener指数、Simpson指数的差异显著(P<0.05);自然恢复林与吊丝竹林、灌草坡、任豆林间的Jsw均匀度指数差异显著(P<0.05)。

    类型
    Type
    样地号
    Sample No.
    物种丰富度(S)
    Species richness
    Shannon-wiener指数
    Shannon-wiener index
    Simpson指数
    Simpson index
    Jsw均匀度指数
    Jsw evenness index
    灌木层
    Shrub layer
    R1 14±4 2.373 3±0.189 7 ab 0.892 0±0.143 3 ab 0.899 3±0.009 8 bcd
    R2 15±3 2.136 3± 0.184 3 ab 0.843 1±0.078 3 ab 0.788 9±0.032 0 bcd
    R3 16±1 2.281 4±0.060 2 a 0.878 0±0.006 4 a 0.822 8±0.005 2 bcd
    R4 12±3 1.379 2±0.199 1 b 0.652 4±0.063 9 b 0.555 0± 0.014 8 a
    草木层
    Herb layer
    R1 7±2 ab 0.924 1±0.186 5 0.416 5±0.062 2 0.474 9±0.022 2
    R2 12±2 a 1.457 1±0.191 9 0.648 9±0.026 7 0.586 4±0.004 7
    R3 10±1 ab 1.540 6±0.188 6 0.733 5±0.064 7 0.669 1±0.039 3
    R4 4±2 b 0.981 7±0.161 6 0.546 7±0.168 4 0.708 2±0.030 9
    注:表中数据为平均值±标准差,下同。同列相同字母表示差异不显著(P>0.05),同列不同字母表示差异显著(P<0.05),下同。
    Note: data in the table as mean ± standard deviation, the same below. The same letters within the same column mean no significant difference(P>0.05), and the different letters within the same column mean significant difference(P>0.05), the same below.

    Table 2.  Diversity of different recovery mode of secondary forest plant

  • 表 2表明:不同恢复模式草本层物种丰富度(S)任豆林的最高(S=12),灌草坡的次之(S=10),自然恢复林的最低(S=4),其中,任豆林与自然恢复林的差异显著;Shannon-wiener指数、Simpson指数均为灌草坡>任豆林>自然恢复林>吊丝竹林;Jsw均匀度指数为自然恢复林>灌草坡>任豆林>吊丝竹林。不同恢复模式的Shannon-wiener指数、Simpson指数、Jsw均匀度指数差异均不显著(P>0.05)。

  • 不同恢复模式林下植物重要值较大的物种见表 3。由表 3可看出:不同恢复模式林下主要植物种类组成不同,但大部分是一些耐旱性、石生性、喜钙性的植物,如红背山麻杆、灰毛浆果楝、茶条木(Delavaya toxocarpa Franch.)等,这与岩溶区岩石裸露率大,土层浅薄且干燥有关。

    样地号Sample No. 灌木Shrub 草本Herb
    种名
    Species
    重要值
    important values/%
    种名
    Species
    重要值
    important values/%
    R1 番石榴Psidium guajava Linn. 48.70±2.85 水蔗草Apluda mutica L. 178.90±9.82
    灰毛浆果楝Cipadessa cinerascens (Pellegr.) Hand.-Mazz. 44.58±1.21 类芦Neyraudia reynaudiana (Kunth) Keng ex Hitchc 36.60±2.70
    潺槁木姜子Litsea glutinosa (Lour.) C. B. Rob. 38.07±2.38 假杜鹃Barleria cristata L. 28.64±1.63
    红背山麻杆Alchornea trewioides (Benth.) Muell. Arg. 38.07±1.57 飞机草Eupatorium odoratum L. 23.89±2.33
    小果叶下珠Phyllanthus reticulatus Poir. 25.40±3.11 蜈蚣凤尾蕨Pteris vittata L. 11.94±1.18
    R2 红背山麻杆Alchornea trewioides (Benth.) Muell. Arg. 67.46±3.12 弓果黍Cyrtococcum patens (L.) A. Camus 122.06±2.37
    苎麻Boehmeria nivea (L.) Gaudich. 41.54±2.30 肾蕨Nephrolepis auriculata (L.) Trimen 52.84±3.25
    香椿Toona sinensis (A. Juss.) Roem. 41.27±4.24 艾草Artemisia argyi Levl. et Van. 44.76±2.10
    灰毛浆果楝Cipadessa cinerascens (Pellegr.) Hand.-Mazz. 40.69±2.28 小窃衣Torilis japonica (Houtt.) DC. 17.65±1.54
    簕仔树Mimosa sepiaria Benth. 21.36±1.81 假臭草Praxelis clematidea (Griseb.) R. M. King et H. Rob. 16.27±1.28
    R3 红背山麻杆Alchornea trewioides (Benth.) Muell. Arg. 50.08±4.47 五节芒Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut. 148.78±5.73
    番石榴Psidium guajava Linn. 46.34±2.90 水蔗草Apluda mutica L. 61.16±6.29
    潺槁木姜子Litsea glutinosa (Lour.) C. B. Rob. 39.70±3.75 白茅Imperata cylindrica (L.) Beauv. 38.91±2.63
    茶条木Delavaya toxocarpa Franch. 31.60±2.29 金丝草Pogonatherum crinitum (Thunb.) Kunth 14.84±1.40
    扁担杆Grewia biloba G. Don 29.54±2.66 斑茅Saccharum arundinaceum Retz. 8.95±1.32
    R4 灰毛浆果楝Cipadessa cinerascens (Pellegr.) and.-Mazz. 106.61±7.27 肾蕨Nephrolepis auriculata (L.) Trimen 175.79±5.86
    红背山麻杆Alchornea trewioides (Benth.) Muell. Arg. 84.62±3.67 弓果黍Cyrtococcum patens (L.) A. Camus 50.93±3.16
    金樱子Rosa laevigata Michx. 23.85±1.94 艾草Artemisia argyi Levl. et Van. 36.72±1.93
    雀梅藤Sageretia thea (Osbeck) Johnst. 18.46±2.08 五节芒Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut. 36.57±1.86
    黑面神Breynia fruticosa (Linn.) Hook. f. 18.33±1.86

    Table 3.  Species important values of different succession stage of secondary forest plant

  • 表 4可见:不同植被恢复模式群落总生物量的变化趋势为自然恢复林(166.65 t·hm-2)>任豆林(48.61 t·hm-2)>吊丝竹林(36.53 t·hm-2)>灌草坡(0.95 t·hm-2)。乔木层中,自然恢复林不同组分生物量与任豆林、吊丝竹林间差异显著(P<0.05);灌草坡的灌木、草本地上生物量与吊丝竹林、任豆林、自然恢复林间差异显著(P<0.05);不同恢复模式凋落物间差异不显著(P>0.05)。吊丝竹林、任豆林的生物量表现为草本层>灌木层;灌草坡与自然恢复林的生物量表现为灌木层>草本层。

    层次Hierarchy 组分Component 恢复模式Restoration model
    R1 R2 R3 R4
    乔木层Tree layer 树干Trunk /(t·hm-2) 17.42±1.05 a 31.19±1.19 a - 112.34±1.70 b
    树枝Branches /(t·hm-2) 2.84±0.64 a 9.10±1.44 a - 24.65±1.04 b
    树叶Leaves /(t·hm-2) 7.70±1.83 a 0.18±0.03 b - 4.40±0.21 c
    地上Overgruand/(t·hm-2) 27.96±2.73 a 40.46±1.46 a - 141.40±1.93 b
    地下Underground /(t·hm-2) 7.85±1.10 a 7.31±1.60 a - 23.58±1.55 b
    林分Stand /(t·hm-2) 35.81±3.79 a 47.77±4.02 a - 164.98±6.47 b
    灌木层Shrub layer 地上Overgruand/(t·hm-2) 0.10±0.01 bcd 0.12±0.08 bcd 0.35±0.04 a 1.01±0.02 bcd
    地下Underground /(t·hm-2) 0.09±0.01 0.14±0.02 0.33±0.02 0.10±0.01
    小计Subtotal /(t·hm-2) 0.19±0.01 0.26±0.03 0.68±0.02 1.11±0.04
    草本层Herb layer 地上Overgruand/(t·hm-2) 0.17±0.05 bcd 0.23±0.07 bcd 0.07±0.02 a 0.22±0.04 bcd
    地下Underground /(t·hm-2) 0.16±0.02 0.25±0.03 0.08±0.01 0.20±0.02
    小计Subtotal /(t·hm-2) 0.33±0.05 0.48±0.02 0.15±0.03 0.42±0.05
    凋落物层Litter layer 凋落物Litter/ (t·hm-2) 0.21±0.01 0.10±0.03 0.13±0.01 0.16±0.03
    总生物量Total biomass /(t·hm-2) 36.54±3.91 48.61±4.10 0.96±0.04 166.66±6.60
    注:同行相同字母表示差异不显著(P>0.05),不同字母表示差异显著(P<0.05)。
    Note: same letters of the same lines indicates no significant difference(P>0.05), different letters mean significant difference(P>0.05).

    Table 4.  Community biomass of different vegetation restoration model

4.   讨论
  • 本研究共调查记录林下植物85种,隶属于47科,81属。与国内一些非岩溶区相关研究对比发现,桂西南岩溶区物种丰富度不高,如浙江古田山24 hm2样地[30]、广东鼎湖山[31]和云南西双版纳[32]20 hm2样地分别有159、210和468种。这与桂西南岩溶区生境的特殊性、结构的多样性与复杂性、小生境的高度异质性等密切相关[33-34]

    不同恢复模式,林下灌木和草本植物的组成不同。灌木层物种丰富度最高的为灌草坡,其次为任豆林,最低为自然恢复林;草本层物种丰富度最高的为任豆林,其次为灌草坡,最低为自然恢复林。灌木层林下物种多样性高于草本层,这与群落结构越复杂、物种多样性指数越高的结论一致[35]

    不同恢复模式,不同组分生物量有差异,群落总生物量、乔木生物量、灌木生物量最大的均为自然恢复林;草本层生物量最大的为任豆林;凋落物层生物量最大的为吊丝竹林;吊丝竹林、任豆林的灌草生物量表现为草本层>灌木层,而灌草坡与自然恢复林的灌草生物量表现为灌木层>草本层。因此,在进行石漠化治理时应重视灌草的作用,注重对灌草的保护和利用[36]。由表 4可知,人工恢复模式(R1吊丝竹林、R2任豆林)群落生物量比R3灌草坡群落生物量分别高38.45和51.17倍,说明在退化生态系统的恢复中人工干预对系统功能的尽快恢复起重要的作用。相关分析结果表明,林下灌木层、草本层物种丰富度与生物量无显著相关(R2=0.02),对二者之间的相互关系有待进一步研究。

    灌草坡群落是植被遭严重破坏后恢复的初始阶段,以耐干旱贫瘠的灌草植物为主,偶有自然生长的乔木。此模式以红背山麻杆、番石榴、潺槁木姜子、茶条木、扁担杆为优势种,比较耐旱的五节芒、水蔗草、白茅、金丝草、斑茅为常见草本。对于此群落,首先应采取禁牧保护措施,减少人为干扰,避免进一步的退化,其次可以人为引种一些抗旱性较强的乔木,使其尽快得到恢复,促进植物群落的迅速形成。

    任豆林和吊丝竹林都是经过人工干预后产生的群落,灌木层多样性大于草本层。任豆林群落这一恢复模式中,乔木层密度相对比较固定,上层乔木对林下造成一定的郁闭,林下小环境相对湿润,从而为大量草本提供了生存条件,有大量肾蕨着生于石缝中,弓果黍、艾草、小窃衣等生于土坑中;林窗下,红背山麻杆、苎麻、灰毛浆果楝、簕仔树等喜光或耐阴灌木占据一定比例。吊丝竹恢复模式对林地造成一定的郁闭,但林内环境较为干燥,存在大量的未分解竹叶,土壤表层生长着大量竹根,此模式下林下植物都是耐干旱贫瘠的物种,如灌木层的番石榴、灰毛浆果楝、潺槁木姜子、红背山麻杆、小果叶下珠,草本层的水蔗草、类芦、假杜鹃、飞机草、蜈蚣凤尾蕨等。对这2个群落,要适当进行间伐,保持合理的密度,有利于林下植被的恢复和林木自身的生长。

    自然恢复林模式是由灌草坡演替而来,生长着少量的小乔木,但仍然保留着灌草坡的特性。群落中灌木种的丰富度较低,群落优势种主要集中于少数几个优势物种,因而,群落的灌木多样性指数与均匀度指数均较低。林下植被主要以一些耐干旱贫瘠的灌草植物为主,如灌木层的红背山麻杆、雀梅藤、金樱子等,草本层的五节芒、肾蕨等。群落多样性指标仍较低,稳定性较差,要达到相对合理的群落结构还需要经历较长的演替时间和过程。对此群落,应保持现状,以封山保育为主,顺其自然发展。

5.   结论
  • (1) 桂西南岩溶区物种不算丰富,本次研究共调查林下植物85种,隶属于47科,81属。

    (2) 不同恢复模式群落生物量的变化趋势为自然恢复林(166.66 t·hm-2)>任豆林(48.61 t·hm-2)>吊丝竹林(36.54 t·hm-2)>灌草坡(0.96 t·hm-2)。

    (3) 在退化生态系统的恢复中,通过适度的人工干预促进生物多样性和植被恢复(如补植乡土树种等),对系统实体功能的恢复起重要作用。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return