• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 30 Issue 5
Oct.  2017
Article Contents
Turn off MathJax

Citation:

Phenotypic Diversities of Nuts of Walnut Populations Originated from Seedlings in Liangshan Prefecture

  • Corresponding author: PEI Dong, peigu@caf.ac.cn
  • Received Date: 2017-03-02
  • Objective Using the nut of Juglans regia and Juglans sigillata in Liangshan of Sichuan as samples to study the phenotype abundance and variation characteristics for detecting resource and providing theory evidence in using resource reasonable. Method Taking 330 seedlings from 15 J. regia and J. sigillata populations as research materials, the diversity and cluster analysis were studied using 18 nut phenotypic traits. Result (1) The coefficient of variation of phenotypic traits in Liangshan walnut population originated from seedlings was between 8.46% and 59.47%, with an average of 35.26%. The nuts with very large (> 20.0 g) and very small (< 5.0 g) single nut weight occupied a certain proportion. The phenotypic traits meet almost all the trait descriptions in the "Guidelines for the conduct of tests for distinctness, uniformity and stability-Juglans (Juglans L.)". Three features in shape and one in skin color of kernels were added. The Simpson index of population genetic traits was 0.201-0.855, Shannon-Wiener index was between 0.649 and 2.873, indicating abundant variations in nut phenotypic diversity in this area. (2) The phenotypic differentiation of 18 phenotypic traits in populations was larger than that among populations in this area and the differentiation coefficients among populations was 6.03%, suggesting the phenotypic differentiation in populations was the main variation source. (3) UPGMA cluster analysis showed that the Manhattan distance of nut phenotypic traits were positively related to the geographic distance or climatic conditions. Conclusion The nut phenotype of J. regia and J. sigillata in Liangshan was abundant. It is the important area for distribution of diversity walnut resources in China.
  • 加载中
  • [1] 路安民. 论胡桃科植物的地理分布[J]. 中国科学院大学学报, 1982, 20(3): 257-274.

    [2] 吴波, 朱春全, 李迪强, 等. 长江上游森林生态区生物多样性保护优先区确定——基于生态区保护方法[J]. 生物多样性, 2006, 14(2): 87-97. doi: 10.3321/j.issn:1005-0094.2006.02.001

    [3] 吴万波, 韩华柏, 朱益川, 等. 川西高山峡谷区核桃种质资源表型多样性调查[J]. 经济林研究, 2007, 25(2): 42-44. doi: 10.3969/j.issn.1003-8981.2007.02.011

    [4]

    Wang H, Pei D, Gu R S, et al. Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers[J]. Journal of the American Society for Horticultural Science, 2008, 133: 197-203. doi: 10.21273/JASHS.133.2.197
    [5] 朱益川, 韩华柏, 吴万波. 四川核桃及其栽培区划[J]. 四川林业科技, 2010, 31(2): 21-26. doi: 10.3969/j.issn.1003-5508.2010.02.005

    [6] 蒲光兰, 肖千文, 吴开志, 等. 四川核桃种质资源表型多样性研究[J]. 湖南农业大学学报: 自然科学版, 2014, 40(2): 162-167.

    [7] GB 26909-2011-T植物新品种特异性、一致性、稳定性测试指南-核桃属[S].

    [8] 徐永杰, 韩华柏, 王滑, 等. 大巴山区核桃实生居群的坚果表型和遗传多样性[J]. 林业科学, 2016, 52(5): 111-119.

    [9] 李志辉, 罗平. PASW/SPSS Statistics中文版统计分析教程. 第3版[M]. 北京: 电子工业出版社, 2010.

    [10] 蒲光兰, 肖千文, 蔡利娟, 等. 四川核桃种质资源坚果的数量性状变异及概率分级[J]. 湖南农业大学学报: 自然科学版, 2015, 41(6): 647-650.

    [11] 余家林, 肖枝洪. 多元统计及SAS应用[M]. 武汉: 武汉大学出版社, 2008.

    [12] 徐斌, 彭莉霞, 杨会肖, 等. 杜鹃红山茶叶片主要性状的遗传多样性分析[J]. 植物研究, 2015, 35(5): 730-734.

    [13] 张莹, 曹玉芬, 霍宏亮, 等. 基于花表型性状的梨种质资源多样性研究[J]. 园艺学报, 2016, 43(7): 1245-1256.

    [14] 钱迎倩. 生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社, 1994.

    [15]

    Chen L N, Ma Q G, Chen Y K, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J]. Scientia Horticulturae, 2014, 168: 240-248. doi: 10.1016/j.scienta.2014.02.004
    [16]

    Wang H, Pan G, Ma Q G, et al. The genetic diversity and introgression of Juglans regia, and Juglans sigillata, in Tibet as revealed by SSR markers[J]. Tree Genetics & Genomes, 2015, 11(1): 1-11.
    [17] 柴春山, 芦娟, 蔡国军, 等. 文冠果人工种群的果实表型多样性及其变异[J]. 林业科学研究, 2013, 26(2): 181-191. doi: 10.3969/j.issn.1001-1498.2013.02.009

    [18] 邓绍勇, 曹泉, 余林, 等. 栀子野生居群叶片和果实性状的表型多样性[J]. 林业科学研究, 2015, 28(2): 289-296.

    [19] 秦倩, 王楠楠, 李金花, 等. 油橄榄品种表型和SSR标记的多样性及聚类分析[J]. 林业科学研究, 2016, 29(5): 676-681. doi: 10.3969/j.issn.1001-1498.2016.05.008

    [20]

    Ebrahimi A, Zarei A, Fatahi R, et al. Study on some morphological and physical attributes of walnut used in mass models[J]. Scientia Horticulturae, 2009, 121(4): 490-494. doi: 10.1016/j.scienta.2009.02.021
    [21] 冯连芬, 吕芳德, 张亚萍, 等. 我国核桃育种及其栽培技术研究进展[J]. 经济林研究, 2006, 24(2): 69-73. doi: 10.3969/j.issn.1003-8981.2006.02.020

    [22] 王金星, 潘刚, 王滑, 等. 西藏核桃叶片和坚果表型多样性及其相关关系研究[J]. 林业科学研究, 2012, 25(2): 236-240. doi: 10.3969/j.issn.1001-1498.2012.02.022

    [23]

    Arzani K, Mansouri-Ardakan H, Vezvaei A, et al. Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran[J]. New Zealand Journal of Crop and Horticultural Science, 2008, 36(3): 159-168. doi: 10.1080/01140670809510232
    [24]

    Cosmulescu S and Botu M. Walnut biodiversity in south-western Romania-resource for perspective cultivars[J]. Pakistan Journal of Botany, 2012, 44(1): 307-311.
    [25] GB/T 20398—2006. 核桃坚果质量等级[S]. 北京: 中国标准出版社, 2006.

    [26]

    Gunn B F, Aradhya M, Salick J M, et al. Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China[J]. Am erican Journal Botany, 2010, 97(4): 660-671. doi: 10.3732/ajb.0900114
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5) / Tables(6)

Article views(3767) PDF downloads(626) Cited by()

Proportional views

Phenotypic Diversities of Nuts of Walnut Populations Originated from Seedlings in Liangshan Prefecture

    Corresponding author: PEI Dong, peigu@caf.ac.cn
  • 1. Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China
  • 2. Forestry Bureau of Liangshan Prefecture, Xichang 615000, Sichuan, China
  • 3. Olive Breeding Demonstration Forestry Station of Liangshan Prefecture, Xichang 615000, Sichuan, China

Abstract:  Objective Using the nut of Juglans regia and Juglans sigillata in Liangshan of Sichuan as samples to study the phenotype abundance and variation characteristics for detecting resource and providing theory evidence in using resource reasonable. Method Taking 330 seedlings from 15 J. regia and J. sigillata populations as research materials, the diversity and cluster analysis were studied using 18 nut phenotypic traits. Result (1) The coefficient of variation of phenotypic traits in Liangshan walnut population originated from seedlings was between 8.46% and 59.47%, with an average of 35.26%. The nuts with very large (> 20.0 g) and very small (< 5.0 g) single nut weight occupied a certain proportion. The phenotypic traits meet almost all the trait descriptions in the "Guidelines for the conduct of tests for distinctness, uniformity and stability-Juglans (Juglans L.)". Three features in shape and one in skin color of kernels were added. The Simpson index of population genetic traits was 0.201-0.855, Shannon-Wiener index was between 0.649 and 2.873, indicating abundant variations in nut phenotypic diversity in this area. (2) The phenotypic differentiation of 18 phenotypic traits in populations was larger than that among populations in this area and the differentiation coefficients among populations was 6.03%, suggesting the phenotypic differentiation in populations was the main variation source. (3) UPGMA cluster analysis showed that the Manhattan distance of nut phenotypic traits were positively related to the geographic distance or climatic conditions. Conclusion The nut phenotype of J. regia and J. sigillata in Liangshan was abundant. It is the important area for distribution of diversity walnut resources in China.

  • 核桃(Juglans regia L.)与泡核桃(J. sigillata Dode)均属胡桃科(Juglandaceae),核桃属(Juglans L.),核桃组(Section Juglans),在我国四川省凉山彝族自治州均有栽培和分布[1]。凉山彝族自治州位于四川省西南部,该地区东接四川盆地,西跨横断山系,北抵川西高原,南临金沙江畔,处于青藏高原和云贵高原与四川盆地的过渡地带;由于独特的地质演化,形成以高山深谷为主,并有平坝、河谷和丘陵相间的特殊地貌,所以形成了最为显著的山地垂直地带性气候,加之是光热资源丰富的低纬度地区,是生物多样性极其丰富的地区[2-4]。凉山州的核桃和泡核桃资源存量丰富,区内德昌、会理、雷波、木里、冕宁、盐源等县是传统产地,并存在一定规模的天然居群和数量可观的实生类型群体[5-6],是核桃和泡核桃宝贵的遗传资源和潜在的种质库。之前对凉山州核桃表型性状的研究较少,已有报道涉及的采样地或资源数量有限,未开展广泛调查及进一步对坚果性状的详细研究。近年来,凉山州开始大力发展核桃产业,首先面临的问题是对现有资源的调查,在摸清本地区核桃和泡核桃资源现状的基础上,方能提出有效的发展规划,最直接和有效的方法是从坚果的主要表型性状及其特色入手。因此,本文以凉山州15个实生居群330棵单株的坚果为试材,利用18个坚果表型性状揭示该地区核桃和泡核桃种质资源的多样性,明确农家实生资源的丰富程度,以期为制定该地区核桃和泡核桃资源保存与利用策略及构建核心种质提供参考。

1.   试材采集地概况
  • 凉山彝族自治州幅员面积6.04万km2,属亚热带季风气候,年均气温11.2~19.4℃,年降水量800~1 300 mm,境内地貌以山地为主,多高山峡谷,也有少量河谷、平坝、中山、山原。该地区是四川省核桃和泡核桃的主要产区,主要分布海拔范围800~2 800 m,全州各县(市)均有分布。

2.   试验方法
  • 根据当地林业部门的相关资料,在核桃和泡核桃资源相对集中的区域,走访当地群众获取树龄、果实特异性等相关信息,选择树龄30 a以上的实生核桃和泡核桃树采集试验样品。每个样本采集30个大小基本一致、饱满的坚果带回实验室,晾干至恒质量后进行表型性状的测定。本研究的试材采集范围包括凉山州15个县(市),15个核桃和泡核桃实生居群名称和采集地生态、地理信息及样本数见表 1

    居群代码
    Code
    采样地
    sampling site
    经度(E)
    Langitude
    纬度(N)
    Latitude
    年降水量
    Annual precipitation/mm
    年均气温
    Annual temperature/℃
    年日照时数
    Annual sunshine hours/h
    海拔Elevation 样本数
    Sample size/个
    范围
    Range/m
    平均值
    Mean/m
    XC 西昌 102°05′09″ 28°04′07″ 1 013 15.0 1 648 1 500~2 500 1 542 9
    YY 盐源 101°29′35″ 27°25′53″ 855 12.1 2 600 1 800~2 700 2 540 8
    DC 德昌 102°10′37″ 27°24′21″ 1 049 17.7 2 147 1 300~2 500 1 380 38
    HL 会理 102°14′33″ 26°39′16″ 1 130 15.1 2 055 1 000~2 600 1 788 46
    HD 会东 102°34′24″ 26°38′08″ 1 001 16.1 2 445 1 100~2 300 2 075 24
    NN 宁南 102°44′00″ 27°03′48″ 970 19.4 2 257 800~1 900 1 643 17
    PG 普格 102°32′22″ 27°22′35″ 1 300 16.8 2 095 1 040~2 680 1 860 12
    JY 金阳 103°15′08″ 27°41′33″ 820 15.8 1 574 900~2 200 1 452 13
    ZJ 昭觉 102°50′58″ 28°00′28″ 1 013 19.0 1 622 1 260~1 600 1 430 15
    MN 冕宁 102°13′48″ 28°32′52″ 1 110 13.3 1 878 1 700~2 500 1 774 14
    YX 越西 102°30′31″ 28°38′06″ 1 133 13.3 1 687 1 620~2 700 1 662 12
    GL 甘洛 102°47′48″ 29°02′25″ 850 17.0 1 661 870~1 980 1 170 12
    MG 美姑 103°06′17″ 28°26′23″ 815 11.2 1 791 1 938~2 211 2 074 33
    LB 雷波 103°34′19″ 28°15′45″ 850 12.2 1 225 900~1 800 1 353 43
    ML 木里 101°16′18″ 27°56′09″ 800 14.3 2 303 2 000~2 800 2 667 34
    合计Tota l330

    Table 1.  The ecological and geographical information and sample size of populations in this study

  • 坚果表型性状测定参照《植物新品种特异性、一致性和稳定性测试指南-核桃属》[7]进行特征描述和赋值,调查测定了核桃和泡核桃的18个坚果表型性状,测试指南中未列出的特征用“其他”表示[8](表 2)。坚果数量性状中的纵径、横径、侧径用游标卡尺(精度0.01 mm)测量,单果质量、核仁质量用天平(精度0.01 g)测量,果壳厚度用螺旋测微仪(精度0.001 mm)测量。3个数量性状的计算公式为:

    代码
    Code
    坚果表型质量性状
    Nut quality traits
    赋值及描述
    Description and assignment
    1 沿缝合线纵切面形状
    Shape in longitudinalsection through suture
    1:椭圆形Elliptic;2:阔椭圆形Broad elliptic;3:长圆形Long circular;4:圆形Circular;
    5:卵圆形Ovate;6:阔卵形Broad ovate;7:三角形Triangular;8:梯形Trapezium
    2 垂直缝合线纵切面形状
    Shape in longitudinal section perpendicular to suture
    1:圆形Elliptic;2:扁圆形Oblate;3:倒卵圆形Inverted Ovate;4:心形Heart-shaped;
    5:阔卵圆形Broad ovate;6:三角形Triangular;7:方(梯)形Squareness(Trapezium);
    8:长椭圆形Long circular;9:卵圆形Ovate;10:其他Other (图 1)
    3 坚果横切面形状Shape in cross section 2:扁圆形Oblate;3:圆形Circular;4:椭圆形Elliptic;5:其他Other
    4 顶尖突出程度Prominence of apical tip 3:平Weak flat;5:凸Medium bulge;7:尖Strong pointed
    5 果肩形状Shape of apex perpendicular to suture 1:圆形Rounded;2:平Truncate
    6 果底形状Shape of base perpendicular to suture 1:圆形Rounded;2:扁圆形Oblate;3:楔形Cuneate;4:方形Truncate;5:其他Other
    7 刻窝Pit on the shell 1:少Slightly;3:中Moderately;5:多Strongly;7:很多Embossed;
    8 刻纹Groove on the shell 1:平Flat;3:浅Shallow;5:中Medium;7:深Deep
    9 缝合线条数Number of pads on suture 1:2条Two;2:2~3条Two-three;3:3条Three;4:2~4条Two-four;5:3~4条Three-four;6:4条Four (图 2)
    10 缝合线突出程度Prominence of pad on suture 3:平Flat;5:凸Bulge
    11 横隔膜质地Diaphragm texture 1:膜质Membranous;2:纸质Papery;3:革质Leathery;4:骨质Bony
    12 内褶壁质地Inner pleat wall of shell 1:膜质Membranous;2:革质Leathery;3:骨质Bony;4:退化Degeneration
    13 核仁皮色Skin color of kernel 1:白(黄白)White (Yellow white);2:浅黄Light yellow;3:黄Yellow;4:浅褐Light brown;5:褐Brown;6:红褐(紫红)Red brown (Purple red);7:紫褐(紫)Purple brown (Purple);8:乌Black (图 3)

    Table 2.  The description and assignment of nut quality character for walnut accessions in Liangshan prefecture

    Figure 1.  Shape in longitudinal section perpendicular to suture of walnut in Liangshan prefecture

    Figure 2.  Number of pads on suture resources of walnut nuts in Liangshan prefecture

    Figure 3.  The kernel color of walnut nuts in Liangshan prefecture

  • 运用Microsoft Excel 2007,SPSS19.0[9]进行数据统计分析,包括分布频率、Simpson指数和Shannon-Wiener指数,并绘制数量性状频率数据分布直方图[10],用SAS 8.1[11]软件统计坚果表型性状的平均值和标准差,用类平均法计算居群间的Manhattan距离并进行聚类分析。用性状的变异系数(CV)表示居群表型多样性水平[12],并对其做Duncan检验;对各性状观测值采用巢式设计方差分析比较居群间和居群内的差异显著性[13];用表型分化系数(VST)反应居群间表型分化程度[14]

3.   结果与分析
  • 表 3可知:13个坚果表型的质量性状Simpson指数为0.201~0.855,Shannon-Wiener指数为0.649~2.873,其中,沿缝合线纵切面形状(代码1)的分别为0.855和2.873,垂直缝合线纵切面(代码2)的分别为0.771和2.546,刻窝数量(代码7)的分别为0.731和1.940,核仁皮色(代码13)的分别为0.761和2.490,坚果缝合线条数(代码9)和缝合线突出程度(代码10)的多样性指数较低。在数据采集和分析中发现倒卵圆形、三角形和方(梯)形3种垂直缝合线纵切面形状和乌仁(一种仁色特征),这在核桃属DUS测试指南中未见描述,另有部分资源描述暂列为其他,因此,将垂直缝合线纵切面形状分为10级,核仁皮色分为8级(表 2)。

    质量性状代码
    Quality traits code
    各级所占比例The proportion of each level/% 辛普森指数
    Simpson index
    香农-维纳指数
    Shannon-Wiener index
    1 2 3 4 5 6 7 8 9 10
    1 15.15 10.91 13.94 21.52 3.33 8.18 13.94 13.03 0.855 2.873
    2 38.79 16.97 2.42 3.03 3.33 1.21 2.12 12.12 17.58 2.42 0.771 2.546
    3 39.39 58.48 1.52 0.61 0.502 1.118
    4 34.85 47.88 17.27 0.619 1.476
    5 58.48 41.52 0.486 0.979
    6 46.06 9.09 14.24 29.09 1.52 0.674 1.840
    7 14.24 30.91 31.21 23.64 0.731 1.940
    8 45.15 40.61 9.39 4.00 0.620 1.578
    9 89.09 6.67 0.30 3.33 0.30 0.30 0.201 0.649
    10 26.97 73.03 0.394 0.841
    11 13.33 46.97 28.48 11.21 0.668 1.770
    12 13.94 24.85 6.97 54.24 0.620 1.642
    13 10.00 17.88 41.82 3.64 3.64 5.45 6.97 10.61 0.761 2.490

    Table 3.  Variation of thirteen quality traits for 330 genotypes nut phenotypic in Liangshan prefecture

    表 23表明:沿缝合线纵切面形状分为8种,其中,圆形较多(21.52%),卵圆形最少(3.33%),其它6种形状占比为8.18%~15.15%;垂直缝合线纵切面形状中,圆形所占比例较大(38.79%),其次为卵圆形(17.58%)、扁圆形(16.97%)、长椭圆形(12.12%),其余阔卵圆形、心形、倒卵圆形、三角形和方(梯)形所占比例较小,为3.33%~1.21%;坚果横切面形状以圆形和扁圆形为主;果肩形状和果底形状各级占比均以圆形居多,分别占58.48%和46.06%;顶尖突出程度中,凸的资源最多,占47.88%,进一步印证了顶尖突出程度明显的坚果在该地区是主要类型。本研究将缝合线条数分为6级,缝合线条数以调查结果所占比例超过样本总数的一半为准,其中缝合线条数2条的占比较多,为89.09%,2条以上的占比较低,为6.67%~0.30%。刻窝各级占比为多和很多的各占31.21%和23.64%,说明所调查地区泡核桃资源的坚果表型以深刻窝为主。横隔膜质地以纸质的资源最多,占46.97%。内褶壁质地退化的资源最多,占54.24%,说明该地区大部分薄壳核桃和泡核桃较易取仁。该地区核仁皮色仍以黄色为主,占41.82%,除其它6种核仁皮色,还有10.61%的乌仁资源。

  • 表 4表明:单果质量为3.29~28.18 g,平均11.99 g;壳厚为0.11~4.50 mm,平均0.96 mm;出仁率为10.00%~78.48%,平均48.06%;圆度指数为0.66~1.13,平均0.88;三径均值为21.24~47.41 mm,平均34.17 mm。坚果核壳厚度的变异系数最大,为44.59%;其次为单果质量,为31.02%;再次是出仁率,为19.03%;最后是三径均值和圆度指数,分别为10.41%和9.22%。

    数量性状代码
    Quantitative traits Code
    数量性状
    Quantitative traits
    最大值
    Max.
    最小值
    Min.
    平均值
    Mean
    极差
    Range
    标准差
    SD
    变异系数
    CV/%
    14 单果质量Weight of nut/g 28.18 3.29 11.99 24.89 3.72 31.02
    15 壳厚Shell thickness/mm 4.50 0.11 0.96 4.39 0.43 44.59
    16 出仁率Kernel rate/% 78.48 10.00 48.06 68.48 9.14 19.03
    17 圆度指数Index of roundness 1.13 0.66 0.88 0.47 0.08 9.22
    18 三径均值Geometric mean diameter/mm 47.41 21.24 34.17 24.17 3.56 10.41

    Table 4.  Variation of five quantitative traits for 330 genotypes nut phenotypic in Liangshan prefecture

    各坚果表型数量性状频率分布直方图(图 4)表明:各性状的分布存在差异,单果质量、出仁率和圆度指数均符合正态分布,但核壳厚度和三径均值近似服从χ2分布。单果质量大多为10.04~13.94 g,占46.67%。出仁率集中在43.26%~52.86%,占51.52%。三径均值在32.31~38.73 mm集中分布,但32.31~36.04 mm的性状频率分布最大,占46.97%。圆度指数较分散,其中,0.78~0.84的占23.33%,0.84~0.92的占35.76%,0.92~0.98的占21.52%。坚果核壳厚度0.74~1.19 mm的性状频率分布最大,占55.76 %。

    Figure 4.  Frequency distribution of nuts phenotype characters of walnut in Liangshan prefecture

  • 表 5可知:18个坚果表型性状变异系数为8.46%~59.47%,差异显著(P<0.05),平均为35.26%,其中,变异程度最大的是刻纹,为59.47%;变异程度最小的是出仁率,为8.46%。15个居群内18个坚果表型性状变异系数平均值为29.49%~39.28%,居群间差异不显著。

    表型性状代码
    Code of phenotypic traits
    居群Population 均值
    Mean/%
    DC GL HD HL JY LB MG ML MN NN PG XC YX YY ZJ
    1 63.21 36.47 63.56 63.55 66.89 47.24 54.99 37.17 46.04 43.86 58.86 69.02 52.26 37.64 49.13 52.66g
    2 31.13 25.69 36.77 38.53 54.20 54.20 29.13 44.78 22.85 40.05 28.75 39.09 42.74 32.63 35.77 37.09def
    3 26.08 20.89 18.84 20.59 15.84 18.83 17.65 17.09 18.81 20.82 21.10 21.43 22.60 21.38 21.82 20.25b
    4 29.41 30.06 36.12 22.87 31.35 34.07 30.97 33.60 30.59 29.33 25.88 29.27 19.93 39.40 31.40 30.28cd
    5 45.20 34.82 30.43 35.49 45.17 38.10 35.48 36.83 35.95 34.99 33.36 36.08 34.82 26.45 36.22 35.96cde
    6 57.76 60.54 58.23 55.16 60.46 54.40 60.60 68.91 63.60 60.91 60.80 49.93 44.20 46.29 61.93 57.58g
    7 44.91 38.56 60.53 47.22 75.31 48.54 39.66 45.05 39.05 27.62 51.31 30.57 30.76 50.65 43.04 44.85f
    8 69.00 49.49 86.92 60.20 65.81 64.11 59.84 52.05 60.31 59.46 67.42 68.82 40.20 46.61 41.82 59.47g
    9 82.22 0.00 37.68 44.70 25.75 54.55 31.91 68.29 24.94 0.00 26.65 70.19 33.36 77.14 78.49 43.73ef
    10 20.79 22.72 16.32 20.53 11.45 15.81 10.09 20.97 25.94 19.31 26.11 27.11 26.86 27.60 14.87 20.43b
    11 36.51 34.88 27.24 29.93 35.36 36.89 32.68 30.28 30.94 29.22 37.26 39.67 55.16 61.72 26.35 36.27cde
    12 40.11 44.72 31.65 40.37 48.86 21.46 32.30 34.09 37.15 40.70 51.31 43.27 69.28 70.71 29.41 42.36ef
    13 47.83 70.20 51.94 64.46 65.56 45.61 57.29 68.67 38.12 52.70 40.18 55.22 63.21 49.68 57.47 55.21g
    14 37.51 36.71 24.67 21.48 31.82 27.99 25.59 34.58 33.64 17.31 22.11 21.66 18.50 37.60 34.33 28.37c
    15 32.76 36.26 34.91 19.31 38.83 43.80 72.44 42.27 25.33 30.32 36.12 23.26 25.43 35.54 35.15 35.45cde
    16 10.57 8.06 6.92 9.33 5.20 10.65 9.38 8.42 6.17 7.33 11.54 6.19 7.94 10.14 9.02 8.46a
    17 15.29 16.07 15.26 16.56 18.91 20.35 29.95 24.58 12.70 10.87 17.60 8.10 11.60 14.11 14.27 16.41ab
    18 10.16 12.71 10.27 7.97 10.31 11.08 8.74 11.35 14.91 5.98 4.77 8.62 5.39 15.16 9.46 9.79a
    均值Mean 38.92 32.16 36.01 34.35 39.28 35.98 35.48 37.72 31.50 29.49 34.51 35.97 33.57 38.91 35.00 35.26
    注:居群代码见表 1,表型性状代码1~18见表 2,下同。“均值”列不同字母表示性状间在0.05水平上差异显著。
    Note:Code of population see table 1, codes of phenotypic traits 1-18 see table 2, the same below. Paired populations with the different letters are significantly different (P<0.05) shown in ‘Mean’ line,and Paired traits with the different letters are significantly different (P<0.05) shown in ‘Mean’ column.

    Table 5.  Variation coefficients (CV) and multiple comparisons of phenotypic traits in 15 populations in Liangshan prefecture

    对15个核桃和泡核桃实生居群的18个表型性状进行巢式方差分析,计算出各分量占变异的比例。由表 6可知:居群内方差分量占总变异的93.97%,居群间方差分量占6.03%;居群间18个表型性状的表型分化系数为0.16%~11.03%,平均为6.03%,18个表型性状分化最大的是刻纹,最小的是果底形状;18个性状方差分量百分比的居群内变异均大于居群间,说明居群内变异是该区域坚果表型变异的主要来源。

    表型性状代码
    Code of phenotypic traits
    方差分量Variance component 方差分量百分比Percentage of variance component /% 居群间表型分化系数
    VST /%
    居群间
    Among populations
    居群内
    Within populations
    居群间
    Among populations
    居群内
    Within populations
    1 3.63×10-1 5.22
    6.50 93.50 6.50
    2 6.03×10-2 11.64 0.52 99.48 0.52
    3 1.56×10-2 2.86×10-1 5.19 94.81 5.19
    4 1.68×10-2 1.98 0.84 99.16 0.84
    5 1.84×10-3 2.81×10-1 0.65 99.35 0.65
    6 2.91×10-3 1.82 0.16 99.84 0.16
    7 2.97×10-1 3.69 7.46 92.54 7.46
    8 3.00×10-1 2.42 11.03 88.97 11.03
    9 6.05×10-3 4.70×10-1 1.27 98.73 1.27
    10 7.35×10-2 7.23×10-1 9.23 90.77 9.23
    11 6.61×10-2 6.67×10-1 9.01 90.99 9.01
    12 1.37×10-1 1.23 10.07 89.93 10.07
    13 4.06×10-1 4.17 8.87 91.13 8.87
    14 1.47 12.49 10.53 89.47 10.53
    15 1.46×10-2 1.72×10-1 7.81 92.19 7.81
    16 3.09×10-4 6.30×10-3 4.68 95.32 4.68
    17 5.73 78.38 6.81 93.19 6.81
    18 1.01 11.72 7.92 92.08 7.92
    均值Mean 5.54×10-1 7.63 6.03 93.97 6.03

    Table 6.  Variance components and phenotypic differentiation coefficients of nut phenotypic traits of walnut populations in Liangshan prefecture

  • 以所测的18个坚果表型性状的平均值为参数,利用核桃和泡核桃实生居群表型性状Manhattan距离进行UPGMA聚类分析,结果(图 5)表明:当遗传距离为0.8时,15个核桃和泡核桃实生居群聚为7类。DC、HL、XC、PG聚为安宁河谷类;JY、LB、MG、ZJ聚为大凉山类;GL、NN、MN聚为一类;HD单独一类,在遗传距离为0.9时与大凉山类聚为一类;YX、YY在遗传距离为1.1时聚为一类;ML与其它居群的遗传距离较远。聚类分析结果呈现了与地理距离或立地条件显著正相关的趋势。

    Figure 5.  Cluster analyses of 15 walnut populations based on average Manhattan distance of nut phenotypic traits

4.   讨论
  • 表型标记是检测遗传变异的常规方法,虽然分子标记在某些方面能准确地反映物种的遗传多样性[15-19],但表型标记仍发挥着无法替代的作用,尤其对一些分布广、变异性大的树种研究更为重要[20]。本文对凉山州15个实生居群330株单株的18个坚果表型性状的多样性分析结果表明,凉山州核桃和泡核桃资源具有丰富的表型多样性,不但涵盖了核桃属DUS测试指南中绝大多数坚果表型性状,还新增加3个垂直缝合纵切面形状,1个核仁皮色和缝合线条数等性状。坚果外观相关性状的Simpson指数和Shannon-Wiener指数变化分别为0.201~0.855和0.649~2.873,其中,沿缝合线纵切面形状、垂直缝合线纵切面形状、刻窝数量和核仁皮色的多样性指数较高,表型多样性相对丰富;缝合线条数和缝合线突出程度多样性指数较低,多样性较差。由表 5可见,沿缝合线纵切面形状、果底形状、刻纹深浅和核仁皮色等表型性状具有相对较高的变异系数,说明凉山州的坚果表型性状不但覆盖度广,还具有其独特的遗传资源,值得保护和利用。

    分析各地核桃和泡核桃单果质量相关研究可知:我国广泛种植的16个早实核桃品种的单果质量为9.4~16.4 g[21],秦巴山区的为4.11~22.87 g[6],西藏的为6.5~22.5 g[22],四川(不含凉山州)的为4.51~20.0 g[10],伊朗的为6.0~15.2 g[23],罗马尼亚的为6.8~18.4 g[24]。本研究区域的坚果单果质量为3.29~27.56 g,<5.0 g和>20.0 g的坚果具有一定比例。坚果三径均值,在四川,最小为2.61 cm,最大为4.68 cm[20]。本样本中,坚果三径均值最小为2.12 cm,最大为4.74 cm。由此可见,凉山州核桃和泡核桃资源丰富度较高。我国现行的《核桃坚果等级》[25]中要求,单果质量越大等级越高,该地区的大果型资源可为品种选育提供丰富的种质资源。

    气候条件是影响物种多样性的重要因子。本研究中,各居群内的变异幅度具有显著性,而居群间的变异程度较小。15个居群间的表型分化系数为6.03%,进一步说明居群内分化是凉山州核桃和泡核桃资源变异的主要途径。这可能与该地区总体气候类型属亚热带季风气候但却有明显的山地气候垂直地带性有关。聚类结果显示,大凉山类中各居群的地理位置相邻,均位于大凉山山区,地貌相似,均具有典型的亚热带山地立体气候;安宁河谷类中各居群地理位置相邻,位于安宁河谷流域,地貌以中山、河谷为主,气候条件相似;GL和MN居群也属于地理距离相近,NN居群因气候条件相似与它们聚为一类;YX和YY居群则仅是气候条件相似;而ML居群与其他居群间地理距离较远,又有山脉河流阻隔,自有独特的高原山地气候,因此,遗传距离与其他居群较大。核桃和泡核桃作为栽培强度较大的树种,长期的人为选择、驯化和传播都可能是导致其表型分化的重要原因[26];而其他居群均处于安宁河和金沙江流域,该地区自古以来是西南地区“南方丝绸之路”的交通要道,核桃常作为食物、礼品或货物往来于此,因此,较强的人为干扰也许是该地区核桃和泡核桃居群间分化不显著的另一个原因。

5.   结论
  • 凉山州坚果表型基本囊括核桃属DUS测试指南中已有坚果表型性状并新增部分性状特征,坚果表型性状的Simpson指数和Shannon-Wiener指数表明表型多样性相对丰富,坚果表型性状居群内变异大于居群间变异,居群间聚类结果显示其地理距离和气候条件与居群间呈正相关的趋势。因此,凉山州核桃和泡核桃资源丰富,特别是坚果表型多样性高。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return