• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 31 Issue 2
Jul.  2019
Article Contents
Turn off MathJax

Citation:

Combined Selection of Wood Density and Growth in Eucalyptus urophylla × E. tereticornis Hybrids

  • Objective To evaluate the reliability of Resistograph penetration method on indirect measurement of wood density of Eucalyptus urophylla×E. tereticornis hybrids, detect the parental effects on cross phenotypic traits and the correlations between growth and wood density, and select fast-growing and high wood-quality Eucalyptus urophylla×E. tereticornis hybrids. Method In a 7.5-year-old trial stand with fifty six hybrid combinations derived from an incomplete factorial mating among 10 E.urophylla (female) and 10 E.tereticornis(male) parents, 79 trees were sampled to determine the correlation in wood density between volumetric and Resistograph measurements. The effects of parents on hybrid growth and wood density were detected by variance analysis. Multiple comparison and independent selection were performed to make joint selection of stand volume and wood density. Result The phenotypic and genetic correlation coefficients between volumetric and Resistograph measurements were 0.52 (P < 0.001) and 0.55 (P < 0.05), respectively. The differences in the traits of height, DBH and stock volume, were highly significant (P < 0.001 or 0.01) among either females or males, but no significant difference was observed for female×male interactions. For ResistograPh-based wood density, however, the differences were highly significant (P < 0.001) among the males and significant (P < 0.05) for female×male interactions, but insignificant among the females. The growth traits of height, DBH and stock volume were highly significantly correlated in both phenotypic and genetic terms (P < 0.001), while their phenotypic and genetic correlations with wood density were highly significant (P < 0.001) and insignificant, respectively. A total of 14 hybrids and 17 individual trees were selected out. Conclusion Resistograph method is convenient, economic and reliable for indirect measurement of wood density of E. urophylla×E. tereticornis hybrids. Female and male parents selecting and parental pairing are important for breeding fast-grow and high wood-quality hybrids. Since there is no significant genetic correlation between growth and wood density, it indicates the necessity of selecting separately against the two traits. The hybrids and trees selected out are of valuable plant materials for further cultivating fast-grow and high wood-quality eucalypt hybrids.
  • 加载中
  • [1]

    Midgley S J. Making a difference:celebrating success in Asia[J]. Australian Forestry, 2013, 76(2):73-75. doi: 10.1080/00049158.2013.790098
    [2] 谢耀坚.真实的桉树[M].北京:中国林业出版社, 2015:36-37.

    [3]

    Wallis A S A, Wearne R H, Wright P J. Analytical characteristics of plantation eucalypt woods relating to kraft pulp yields[J]. APPITA Journal, 1996, 49(6):427-432.
    [4]

    Hung T D, Brawner J T, Meder R, et al. Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam[J]. Annals of Forest Science, 2015, 72(2):205-217. doi: 10.1007/s13595-014-0426-9
    [5]

    Fearnside P M. Wood density for estimating forest biomass in Brazilian Amazonia[J]. Forest Ecology and Management, 1997, 90(1):59-87. doi: 10.1016/S0378-1127(96)03840-6
    [6]

    Nogueira E M, Fearnside P M, Nelson B W, et al. Wood density in forests of Brazil's 'arc of deforestation':Implications for biomass and flux of carbon from land-use change in Amazonia[J]. Forest Ecology and Management, 2007, 248(3):119-135. doi: 10.1016/j.foreco.2007.04.047
    [7]

    Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2009, 12(4):351-366. doi: 10.1111/ele.2009.12.issue-4
    [8]

    Ukrainetz N K, O'Neill G A. An analysis of sensitivities contributing measurement error to Resistograph values[J]. Canadian Journal of Forest Research, 2010, 40(4):806-811. doi: 10.1139/X10-019
    [9]

    Raymond C A, Muneri A, MacDonald A C. Non-destructive sampling for basic density in Eucalyptus globulus and E. nitens[J]. APPITA Journal, 1998, 51(3):224-228.
    [10]

    Hein P R G, Bouvet J-M, Mandrou E, et al. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S. T. Blake wood[J]. Annals of Forest Science, 2012, 69(6):681-691. doi: 10.1007/s13595-012-0186-3
    [11]

    Isik F, Li B. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs[J]. Canadian Journal of Forest Research, 2003, 33(12):2426-2435. doi: 10.1139/x03-176
    [12]

    Bouffier L, Charlot C, Raffin A, et al. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)[J]. Annals of Forest Science, 2008, 65(1):106p1-106p8.
    [13]

    Weng Q, He X, Li F, et al. Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments[J]. Silvae Genetica, 2014, 63(1-2):15-24.
    [14] 彭仕尧, 徐建民, 李光友, 等.尾细桉无性系在雷州半岛的生长与遗传分析[J].中南林业科技大学学报:自然科学版, 2013, 33(4):23-27.

    [15]

    He X, Li F, Li M, et al. Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E. urophylla×E. tereticornis hybrids[J]. New Forests, 2012, 43(3):383-394. doi: 10.1007/s11056-011-9287-3
    [16] 何旭东, 李发根, 翁启杰, 等.尾叶桉×细叶桉杂种生长和耐寒性的联合选择[J].中南林业科技大学学报:自然科学版, 2010, 30(8):68-71.

    [17]

    He X, Wang Y, Li F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. American Journal of Botany, 2012, 99(4):e134-e148. doi: 10.3732/ajb.1100442
    [18]

    Gilmour A R, Gogel B J, Cullis B R, et al. ASReml User Guide Release 3.0[M]. Hemel Hempstead:VSN International Ltd, 2009:214-219.
    [19]

    Stackpole D J, Vaillancourt R E, Marcelo A, et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus[J]. Tree Genetics & Genomes, 2010, 6(2):179-193.
    [20]

    İçel B, Güler G. Nondestructive determination of spruce lumber wood density using drilling resistance (Resistograph) method[J]. Turkish Journal of Agriculture and Forestry, 2016, 40:900-907. doi: 10.3906/tar-1606-76
    [21]

    Eldridge K G, Davidson J, Hardwood C, et al. Eucalypt Domestication and Breeding[M]. Oxford:Oxford University Press, 1993:139-153.
    [22]

    Potts B M, Dungey H S. Interspecific hybridization of Eucalyptus:key issues for breeders and geneticists[J]. New Forests, 2004, 27(2):115-138. doi: 10.1023/A:1025021324564
    [23]

    Malan F S, Verryn S D. Effect of genotype-by-environment interaction on the wood properties and qualities of four-year-old Eucalyptus grandis and E. grandis hybrids[J]. South African Forestry Journal, 1996, 176(1):47-53. doi: 10.1080/00382167.1996.9629709
    [24]

    MacDonald A C, Borralho N M G, Potts B M. Genetic variation for growth and wood density in Eucalyptus globulus ssp. globulus in Tasmania (Australia)[J]. Silvae Genetica, 1997, 46(4):236-241.
    [25]

    Greaves B L, Borralho N M G, Raymond C A, et al. Age-age correlations in, and relationships between basic density and growth in Eucalyptus nitens[J]. Silvae Genetica, 1997, 46(5):264-270.
    [26]

    Hung T D, Brawner J T, Lee D J, et al. Genetic variation in growth and wood-quality traits of Corymbia citriodora subsp. variegata across three sites in south-east Queensland, Australia[J]. Southern Forests, 2016, 78(3):225-239. doi: 10.2989/20702620.2016.1183095
    [27]

    Kang K S, Lai H L, Lindgren D. Using single family in reforestation:gene diversity concerns[J]. Silvae Genetica, 2002, 51(1):65-72.
    [28]

    Danuseviěius D, Lindgren D. Clonal testing may be the best approach to long-term breeding of Eucalyptus[M]//Wei R-P, Xu D. Eucalyptus Plantations Research, Management and Development. Singapore: World Scientific, 2003: 192-210.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(3892) PDF downloads(599) Cited by()

Proportional views

Combined Selection of Wood Density and Growth in Eucalyptus urophylla × E. tereticornis Hybrids

    Corresponding author: GAN Si-ming, siming.gan@ritf.ac.cn
  • 1. State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
  • 2. Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
  • 3. Plant Nursery Branch, Fujian Yongan Forestry(Group) Joint-stock Co., Ltd, Yongan 366000, Fujian, China
  • 4. Changtai Yanxi State-owned Forest Farm, Changtai 363902, Fujian, China

Abstract:  Objective To evaluate the reliability of Resistograph penetration method on indirect measurement of wood density of Eucalyptus urophylla×E. tereticornis hybrids, detect the parental effects on cross phenotypic traits and the correlations between growth and wood density, and select fast-growing and high wood-quality Eucalyptus urophylla×E. tereticornis hybrids. Method In a 7.5-year-old trial stand with fifty six hybrid combinations derived from an incomplete factorial mating among 10 E.urophylla (female) and 10 E.tereticornis(male) parents, 79 trees were sampled to determine the correlation in wood density between volumetric and Resistograph measurements. The effects of parents on hybrid growth and wood density were detected by variance analysis. Multiple comparison and independent selection were performed to make joint selection of stand volume and wood density. Result The phenotypic and genetic correlation coefficients between volumetric and Resistograph measurements were 0.52 (P < 0.001) and 0.55 (P < 0.05), respectively. The differences in the traits of height, DBH and stock volume, were highly significant (P < 0.001 or 0.01) among either females or males, but no significant difference was observed for female×male interactions. For ResistograPh-based wood density, however, the differences were highly significant (P < 0.001) among the males and significant (P < 0.05) for female×male interactions, but insignificant among the females. The growth traits of height, DBH and stock volume were highly significantly correlated in both phenotypic and genetic terms (P < 0.001), while their phenotypic and genetic correlations with wood density were highly significant (P < 0.001) and insignificant, respectively. A total of 14 hybrids and 17 individual trees were selected out. Conclusion Resistograph method is convenient, economic and reliable for indirect measurement of wood density of E. urophylla×E. tereticornis hybrids. Female and male parents selecting and parental pairing are important for breeding fast-grow and high wood-quality hybrids. Since there is no significant genetic correlation between growth and wood density, it indicates the necessity of selecting separately against the two traits. The hybrids and trees selected out are of valuable plant materials for further cultivating fast-grow and high wood-quality eucalypt hybrids.

  • 桃金娘科(Myrtaceae)桉属(Eucalyptus L'Hérit.)、杯果木属(Angophora Cav.)和伞房属(Corymbia K.D. Hill & L.A.S. Johnson)树种统称桉树,在全球热带、亚热带和温带地区广为种植,面积超过2 100万hm2[1]。桉树也是华南地区重要的短周期人工林树种,种植面积达450万hm2[2],其木材广泛用于制造纸浆、胶合板、纤维板和家具等。相应地,生长和木材性质是重要的经济性状[3-4],一直以来都是桉树育种改良的主要目标性状。

    木材密度是重要的材性性状,既影响森林产出木材的生物量,从而影响碳汇的估算[5-6],也与木材强度、结构和化学成份等木材品质相关,是一个材性的综合经济指标[7]。木材密度测定的传统方法包括容积法(或饱和排水法)和X射线法,存在耗时长、费用高的缺点[8],很难用于大量样品的测定。目前,一些快速、无损地测定木材密度的间接方法得到发展,如Pilodyn针击法[9]、近红外光谱法[10]和Resistograph钻刺法[8-11],其中,Resistograph钻刺法基于电钻连接的Resistograph钻针(直径仅1.5 mm)匀速穿刺树径,即时记录扭力曲线作为木材密度的指示[8]。Resistograph钻刺法已有效用于针叶树木材密度的间接测定,如火炬松(Pinus taeda L.)[11]和海岸松(P. pinaster Ait.)[12],但阔叶树中只笔者报道了其对尾叶桉(E. urophylla S. T. Blake)×细叶桉(E. tereticornis Smith)杂种(简称尾细桉)的木材密度测定[13],而对Resistograph钻刺法与标准方法测定的木材密度的相关性尚无研究。

    尾细桉在华南沿海广泛栽培,其速生、高产且具有较好的抗风[14]和耐寒潜力[15-16]。目前,尾细桉选育研究主要针对生长和耐寒性[14-16],进一步的选育工作需要纳入材性性状。本研究基于不完全析因交配设计产生的56个尾细桉杂交组合,建立了Resistograph钻刺法与容积法测定木材密度的相关性,分析了7.5年生尾细桉生长和木材密度的遗传变异和性状相关性,并结合两类性状选择了杂交组合和单株,旨在为培育速生性好、木材密度高的桉树良种提供材料基础。

1.   试验材料与大田设计
  • 10株尾叶桉(母本)与10株细叶桉(父本)不完全析因交配产生了62个杂交组合[15],母本和父本的起源见文献[17]。2003年7月在福建省永安市仙峰岭(117°23′ E,25°53′ N)建立大田试验林,10个母本的自由授粉家系也参与试验,对照为当前普遍种植的无性系DH32-29和广林-9。试验设计为随机完全区组,4株单行小区,4次重复,株行距2 m×3 m。试验点水热条件等信息见文献[16]。7.5年生时大田试验成功保留的杂交组合数为56个。

2.   研究方法
  • 7.5年生时利用Vertex Ⅲ测高器(瑞典Haglof)和胸径尺观测树高(H)和胸径(D),单株材积(V)基于树高和胸径计算:V=H×D2/30 000。

    7.5年生时还利用Resistograph F-400S (德国Instrumenta Mechanik Labor GmbH)间接测定木材密度,即钻刺木材密度(WDi)。对胸径大于8 cm的单株进行树皮-树皮的钻刺,共56个杂种488株,钻刺位置为1.3 m高处,避免节疤,即时记录的钻刺扭力曲线自动保存于仪器。扭力曲线下载到电脑后,利用厂家提供的Resistograph软件查看。由于扭力会随钻刺进度而增大,只取一端树皮内开始的5 cm钻刺曲线进行单株平均扭力(%)的估算[12],单株WDi为平均扭力的平方根[13]。此外,为验证钻刺法间接测定木材密度的可靠性,随机选取53个杂交组合的79株及9个自由授粉家系的14株,利用生长锥(直径5 mm)钻取木芯,通过容积法测定木材基本密度(WD),测定方法参考国家标准GB/T 1933-2009。

  • 利用R软件进行各性状的平均值和变异系数(CV, %)计算及方差分析和多重比较,杂种与自由授粉家系的差异显著性利用t检验进行检测。方差分析基于个体的混合线性模型:

    式中:Yijk为重复k中母本i和父本j的杂种单株表型值,μ为总体平均值,MiFjMFij是随机效应,分别为母本i的遗传效应、父本j的遗传效应、母本i和父本j的互作效应,Bk是固定效应,为重复k的效应,Eijk是误差。利用ASReml程序包[18]估算性状间的表型相关系数(rp)和遗传相关系数(rg)。WDiWD的相关分析基于容积法测定的53个杂交组合的79株进行。

    杂交组合和单株的选择采用独立淘汰法。组合的选择基于材积和钻刺木材密度的多重比较(Duncan法,α=0.01),两性状值均高于对照无性系的杂种入选。单株的选择以对照的最好单株作为标准,材积和木材密度均高于标准的单株入选。

3.   结果与分析
  • 表 1表明:杂种的平均生长均显著高于自由授粉家系且变异系数较低;杂种的WDi平均值显著高于自由授粉家系,且变异系数稍高,表明尾细桉具有杂种优势。

    性状Trait 杂种Hybrid 自由授粉家系Open pollinated family
    平均值Mean 变异系数CV /% 平均值Mean 变异系数CV /%
    树高H /m 16.70 ± 4.22*** 25.3 15.08 ± 3.98 26.4
    胸径D /cm 13.16 ± 3.89** 29.6 11.48 ± 3.85 33.5
    材积V/(×10-2 m3) 14.50 ± 9.41*** 65.1 10.64 ± 8.63 81.1
    钻刺木材密度WDi 0.39 ± 0.06** 15.8 0.37 ± 0.05 15.0
    木材基本密度WD /(g.cm-3) 0.49 ± 0.05 9.5 0.48 ± 0.04 9.3
    注:表中数据为平均值±标准差,杂种和自由授粉家系的WD平均值分别基于53个杂交组合的79株和9个自由授粉家系的14株计算得出。***表示P<0.001显著,**表示P<0.01显著。
    Note: data in the table as mean ± standard deviation. WD means for hybrids and open pollinated families were calculated with 79 trees of 53 crosses and 14 trees of 9 families, respectively. *** significance at P<0.001, ** significance at P<0.01.

    Table 1.  Mean values of the traits measured for E. urophylla ×E. tereticornis hybrids and maternal open pollinated families

  • WDiWD的表型相关系数(rp)为0.52 (P<0.001),遗传相关系数(rg)为0.55(P<0.05)。两种方法测定的木材密度相关显著,表明Resistograph钻刺法具有较高的可靠性,WDi可作为木材密度间接测定的有效指标。

  • 表 2表明:对于生长性状HDV,母本间和父本间均差异极显著(P<0.001或0.01),表明母本和父本对生长性状的加性效应均显著;但母本×父本互作不显著,表明参试群体的生长受显性效应的影响较弱。

    状Trait 变异来源Source of variation 自由度d.f. 均方Mean square FF value
    树高H 重复Replicate 3 58.9 3.67*
    母本Female 9 44.0 2.74**
    父本Male 9 62.9 3.92***
    母本×父本Female×male 37 18.0 1.12
    误差Error 432 16.0
    胸径D 重复Replicate 3 28.5 2.07
    母本Female 9 44.4 3.23***
    父本Male 9 62.8 4.57***
    母本×父本Female × male 37 11.9 0.86
    误差Error 432 13.7
    材积V 重复Replicate 3 0.028 9 3.69*
    母本Female 9 0.030 4 3.87***
    父本Male 9 0.033 7 4.29***
    母本×父本Female × male 37 0.007 8 0.99
    误差Error 432 0.007 9
    钻刺木材密度WDi 重复Replicate 3 0.080 8 27.63***
    母本Female 9 0.005 6 1.90
    父本Male 9 0.010 4 3.55***
    母本×父本Female × male 37 0.004 8 1.64*
    误差Error 432 0.002 9
    注: ***表示P<0.001显著,**表示P<0.01显著,*表示P<0.05显著。
    Note: *** significance at P<0.001, ** significance at P<0.01, * significance at P<0.05.

    Table 2.  Analysis of variance on H, D, V and WDi at age of 7.5 years

    对于WDi,父本间差异极显著(P<0.001),而母本间差异不显著,表明父本对木材密度的影响极显著且比母本更重要;母本×父本互作显著(P<0.05),表明木材密度也受显性效应的影响。此外,重复间的差异也极显著(P<0.001),表明小环境亦可显著影响木材密度。

  • 表 3表明:7.5年生生长性状DHV之间的表型相关系数(rp)为0.82~0.93,遗传相关系数(rg)为0.93~0.99,均极显著相关(P<0.001),表明3个生长性状具有相似的遗传基础,可能有共同的基因影响树高、胸径和/或材积。

    性状Trait 树高H 胸径D 材积V 钻刺木材密度WDi
    树高H 0.93±0.06*** 0.99±0.02*** 0.38±0.33
    胸径D 0.82±0.02*** 0.97±0.03*** 0.38±0.32
    材积V 0.93±0.01*** 0.92±0.01*** 0.32±0.34
    钻刺木材密度WDi 0.36±0.04*** 0.36±0.04*** 0.35±0.04***
    注:表中数据为相关系数±标准误,斜对角线上方为遗传相关、下方为表型相关,***表示P<0.001显著。
    Note: data in the table as correlation coefficient ± standard error. Phenotypic and genetic correlation coefficients were below and above the diagonal, respectively. *** significance at P<0.001.

    Table 3.  Phenotypic and genetic correlation coefficients between H, D, V and WDi at age of 7.5 years

    WDiDHV间的rprg均较小,rp为0.35~0.36,极显著相关(P<0.001);rg为0.32~0.38,相关不显著。WDi与生长性状的不显著遗传相关表明,两类性状可能为独立遗传,育种改良中需要对这两类性状分别进行选择,以获得速生且木材密度较大的优良杂种。

  • 两对照无性系中,DH32-29的平均单株材积和平均钻刺木材密度均高于广林-9,故以DH32-29作为选择的标准,共选出VWDi平均值均高于对照的杂交组合14个(表 4),其平均单株材积为标准的103.7%~156.7%,平均WDi为标准的106.9%~124.2%。来自母本E.u02、E.u03、E.u04、E.u06、E.u07和E.u09的中选组合各2个,来自父本E.t11、E.t17和E.t18的中选组合分别为3、3、4个,为较好的杂交亲本。

    杂种编号Cross no. 亲本组合Parental cross 材积V 钻刺木材密度WDi
    排名Rank 平均值Mean /m3 杂种/对照Cross/CK /% 排名Rank 平均值Mean /m3 杂种/对照Cross/CK /%
    45 E.u07 × E.t11 2 0.252 7 a 156.7 10 0.41 abc 114.8
    28 E.u04 × E.t18 3 0.245 8 ab 152.4 5 0.43 abc 118.4
    23 E.u03 × E.t18 5 0.233 7 abc 145.0 26 0.39 abc 109.3
    15 E.u02 × E.t17 6 0.227 3 abc 141.0 18 0.40 abc 111.2
    52 E.u07 × E.t18 7 0.222 9 abc 138.2 6 0.43 abc 118.3
    60 E.u09 × E.t18 8 0.194 4 abc 120.6 20 0.40 abc 110.6
    37 E.u06 × E.t11 10 0.183 9 abc 114.1 1 0.45 a 124.2
    30 E.u05 × E.t11 11 0.183 8 abc 114.0 13 0.41 abc 112.7
    21 E.u03 × E.t15 12 0.178 7 abc 110.8 17 0.40 abc 111.9
    43 E.u06 × E.t17 14 0.173 8 abc 107.8 8 0.42 abc 115.3
    59 E.u09 × E.t17 15 0.173 6 abc 107.6 33 0.39 abc 106.9
    26 E.u04 × E.t16 16 0.170 2 abc 105.5 30 0.39 abc 107.0
    17 E.u02 × E.t19 17 0.169 4 abc 105.1 14 0.41 abc 112.6
    54 E.u08 × E.t12 18 0.167 2 abc 103.7 19 0.40 abc 111.1
    注:对照为无性系DH32-29,平均值后相同的小写字母表示不同杂种间的差异不显著(基于Duncan法的多重比较,α= 0.01)。
    Note: CK is represented by clone DH32-29. The same letters following means indicate non-significant difference between crosses (Duncan’s multiple comparison, α= 0.01).

    Table 4.  Means of V and WDi for the 14 crosses selected out

    以对照无性系DH32-29最大单株的V (0.273 2 m3)和广林-9最高单株的WDi(0.441)为标准,评选出17株杂种单株,单株的V为标准的101.3%~149.1%,WDi为标准的100.1%~118.8% (具体数据未列示)。

4.   讨论
  • 木材密度是重要的材质性状,其快速、无损的间接测定一直是林木遗传育种和木材学研究人员感兴趣的问题。目前,常用的间接测定方法包括Pilodyn针击法[9]、近红外光谱法[10]和Resistograph钻刺法[8, 11]等。Pilodyn针击法较简便,但只能感应外层数个年轮[19],而木材密度会随年龄增加向内层逐渐提高,因此,该法较粗放。近红外光谱法可直接测定木材密度等多种理化性状,可靠性好,但近红外光谱仪较贵,前期仍需标准测定以建立回归模型,还需采集试样(虽然只需几克或几十克),因而,测定成本仍较高。Resistograph可钻刺全部年轮,不需专门采样,仪器投入也较低,虽然测定的仍是相对密度,但本研究中其测值与标准容积法的测定结果具有显著的表型相关和遗传相关,表明该法兼备简便、经济和可靠的优点。可见,Resistograph钻刺法不仅可以有效用于针叶树的木材密度测定[11-12, 20],对快速、无损地测定阔叶树的木材密度亦有较大潜力。

    尾叶桉和细叶桉是热带和亚热带地区重要的速生树种,种内变异显著[21],为杂交亲本选配提供了丰富的种质材料。本研究中,母本和父本对杂种生长均有极显著或显著影响,父本对钻刺木材密度的影响也极显著(表 2),表明母本和父本的加性遗传效应很重要,杂交工作中需要重视母本和父本的选择。虽然母本对钻刺木材密度的效应不显著,但不能说明母本对杂种木材密度的影响不重要,因为这也可能是由于母本间木材密度变异较小、杂种子代间木材密度变异不显著所致;相反,对于尾叶桉33个控制授粉家系(8株×8株不完全析因交配)的14年生木材密度,母本和父本的遗传方差均显著[10]。另一方面,母本×父本互作的显性效应对生长不显著,但对钻刺木材密度显著(表 2),表明杂种木材密度的改良除了亲本选择外,还需重视亲本的组配。此外,除胸径外,其他性状在重复间差异显著或极显著(表 2),这可能与杂种对立地环境的敏感性较强[22]、试验地有一定坡度导致的重复间立地条件差异有关,如巨桉(E. grandis Hill ex Maiden)×柳桉(E. saligna Smith)和巨桉×赤桉(E. camaldulensis Dehnh.)生长和材性的环境差异均显著[23],这也表明进一步的杂种试验需要安排多个地点。

    桉树树高、胸径和/或材积之间的强相关已有较多报道[10, 13, 15],但这些性状与木材密度之间相关结果的报道却不尽相同,如本文结果与蓝桉(E. globulus Labill.)[24]、亮果桉(E. nitens Maiden)[25]和粗皮桉(E. pellita F. Muell.)[4]生长与木材密度遗传相关不显著的报道一致,但与尾叶桉中较强的遗传负相关[10]和柠檬桉(Corymbia citriodora subsp. variegata F. Muell.)中较强的遗传正相关[26]不一致。这表明生长与材性的相关程度可能与树种和试验环境有关。

    对照DH32-29和广林-9是广泛种植的速生无性系,但在本试验中,对照的平均材积低于评选出的14个杂交组合,对照的最大单株材积低于评选出的17株单株,这可能与当地寒害的影响有关,因为尾细桉具有一定的耐寒潜力[16],而对照无性系耐寒性较差。选出的尾细桉杂交组合和单株中,1个组合(E.u03 × E.t15)和10株在前期评选中具有较好的耐寒性[16]。选出的这些杂交组合和单株可进一步开展中间试验,以选择具有生产应用价值的良种。对于异交的林木,优良组合可通过建立种子园收获种子进行育苗和造林,即以“家系林业”的策略[27]进行繁育。对于较易通过扦插和组织培养进行无性繁殖的杂种(包括尾细桉),基于优良单株的无性系选育应是更有效的良种培育途径[28],因此,选出的杂种单株是下一步的无性系试验的有用材料。

5.   结论
  • (1) Resistograph钻刺法可快速、无损地测定尾细桉杂种的木材密度,具有简便、经济和可靠的优点,是一种潜力较大的间接测定方法。

    (2) 母本和父本对尾细桉杂种生长影响显著,父本和母本×父本互作对杂种木材密度影响显著,母本和父本选择以及母本与父本的组配对培育速生、木材密度高的优良尾细桉杂种均较重要。

    (3) 尾细桉生长与木材密度的遗传相关不显著,需要对这两类性状分别进行选择。

    (4) 选出的尾细桉杂种和单株为培育速生、木材密度高的桉树良种提供了有价值的材料,可用于下一步的中间试验。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return