• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 31 Issue 4
Jul.  2019
Article Contents
Turn off MathJax

Citation:

Research Progress and Application Prospect of Insect Sex Pheromone Mating Disruption

  • Objective Application progress, ecological factor and controlling-release carrier types of insect sex pheromone mating disruption are discussed in depth, it could provide technical references for controlling insect pests with the mating disruption technology. Method The application, environmental factors, controlling-release carrier types (capillary, microcapsule, Puffer®, SPLAT®, paraffin, fiber, electrospun/nanofibers) and the mechanism of sex pheromone mating disruption at home and abroad were presented, in addition, the merits and demerits of different controlling-release carrier were indicated. Result Mating disruption of insect sex pheromone is a novel and green technology due to its high efficiency, specificity, environment-friendly and as an important part of Integrated Pest Management. And it has been widely used in Lepidoptera pests control, as well as Coleoptera, Homoptera, Hemiptera, Hymenoptera. Controlling-release carrier and rates are the precondition of sex pheromone mating disruption technology, and the application mechanism was revealed. The economic and policy factor restricting the application of mating disruption is further clarified, so as to provide references for controlling insect pests with sex pheromone mating disruption in China. Conclusion Mating disruption of insect sex pheromone is playing an important role in the pest control, and has a broad prospect.
  • 加载中
  • [1] 杜家伟.昆虫信息素及其应用[M].北京:中国林业出版社, 1988.

    [2] 孟宪佐.我国昆虫信息素研究与应用进展[J].昆虫知识, 2000, 37(2):75-84. doi: 10.3969/j.issn.0452-8255.2000.02.002

    [3] 马涛, 温秀军, 李兴文.昆虫性信息素人工合成技术研究进展[J].世界林业研究, 2012, 25(6):46-50.

    [4]

    Ando T, Yamakawa R. Analyses of lepidopteran sex pheromones by mass spectrometry[J]. Trends in Analytical Chemistry, 2011, 30(7):990-1002. doi: 10.1016/j.trac.2011.03.010
    [5]

    Ma T, Li Y Z, Sun Z H, et al. (Z, E)-9, 12-Tetradecadien-1-ol:a major sex pheromone component from Euzophera pyriella (Lepidoptera:Pyralididae) in Xinjiang, China[J]. Florida Entomologist, 2014, 97(2):496-503. doi: 10.1653/024.097.0221
    [6]

    Babson A L. Eradicating the gypsy moth[J]. Science, 1963, 142(3591):447-448.
    [7]

    Burgess E D. Gypsy moth control[J]. Science, 1964, 143(3606):526.
    [8]

    Wright R H. After pesticides-what?[J]. Nature, 1964, 204(4954):121-125. doi: 10.1038/204121a0
    [9]

    Gaston L K, Shorey H H, Saario C A. Insect population control by the use of sex pheromones to inhibit orientation between the sexes[J]. Nature, 1967, 213(5081):1155.
    [10]

    Suckling D M, Clearwater J R. Small scale trials of mating disruption of Epiphyas postvittana (Lepidoptera:Tortricidae)[J]. Environmental Entomology, 1990, 19(6):1702-1709. doi: 10.1093/ee/19.6.1702
    [11]

    Trimble R M, Tyndall C A. Disruption of mating in the spotted tentiform leafminer (Lepidoptera:Gracillariidae) using synthetic sex pheromone[J]. Canadian Entomologist, 2000, 132(1):107-117. doi: 10.4039/Ent132107-1
    [12]

    Mo J, Glover M, Munro S, et al. Evaluation of mating disruption for control of light brown apple moth (Lepidoptera:Tortricidae) in citrus[J]. Journal of Economic Entomology, 2006, 99(2):421-426. doi: 10.1093/jee/99.2.421
    [13]

    Alfaro C, Navarro-Llopis V, Primo J. Optimization of pheromone dispenser density for managing the rice striped stem borer, Chilo suppressalis (Walker), by mating disruption[J]. Crop Protection, 2009, 28(7):547-628. doi: 10.1016/j.cropro.2009.03.011
    [14]

    Witzgall P, Kirsch P, Cork A. Sex pheromone and their impact on pest management[J]. Journal of Chemical Ecology, 2010, 36(1):80-100. doi: 10.1007/s10886-009-9737-y
    [15]

    Samietz J, Baur R, Hillbur Y. Potential of synthetic sex pheromone blend for mating disruption of the swede midge, Contarinia nasturtii[J]. Journal of Chemical Ecology, 2012, 38(9):1171-1177. doi: 10.1007/s10886-012-0180-0
    [16]

    Mori B A, Evenden M L. Challenges of mating disruption using aerosol-emitting pheromone puffers in red clover seed production fields to control Coleophora deauratella (Lepidoptera:Coleophoridae)[J]. Environmental Entomology, 2015, 44(1):34-43. doi: 10.1093/ee/nvu001
    [17]

    Reddy G V, Guerrero A. New pheromones and insect control strategies[J]. Vitamins and Hormones, 2010, 83(3):493-519.
    [18]

    Koppenhöfer A K, Behle R W, Dunlap C, et al. Pellet Formulations of sex pheromone components for mating disruption of Oriental Beetle (Coleoptera:Scarabaeidae) in Turfgrass[J]. Environmental Entomology, 2008, 37(5):1126-1135. doi: 10.1603/0046-225X(2008)37[1126:PFOSPC]2.0.CO;2
    [19]

    Behle R W, Cossé A A, Dunlap C, et al. Developing wax-based granule formulations for mating disruption of oriental beetles (Coleoptera:Scarabaeidae) in Turfgrass[J]. Journal of Economic Entomology, 2009, 101(6):1856-1863.
    [20]

    Rodriguez-Saona C, Polk D, Holdcraft R, et al. Splat-OrB Reveals competitive attraction as a mechanism of mating disruption in oriental beetle (Coleoptera:Scarabaeidae)[J]. Environmental Entomology, 2010, 39(6):1980-1989. doi: 10.1603/EN10062
    [21]

    Arakaki N, Hokama Y, Nagayama A, et al. Mating disruption for control of the white grub beetle Dasylepida ishigakiensis (Coleoptera:Scarabaeidae) with synthetic sex pheromone in sugarcane fields[J]. Applied Entomology and Zoology, 2013, 48(4):441-446. doi: 10.1007/s13355-013-0202-6
    [22]

    Mahroof R M, Phillips T W. Mating disruption of Lasioderma serricorne (Coleoptera:Anobiidae) in stored product habitats using the synthetic pheromone serricornin[J]. Journal of Applied Entomology, 2014, 138(5):378-386. doi: 10.1111/jen.2014.138.issue-5
    [23]

    Bar Zakay I, Peleg B A, Hefetz A. Mating disruption of the California red scale Aonidiella aurantii[J]. Hassadeh, 1987, 69:1228-1231.
    [24]

    Moawad G M, El Hamaky M A, Gergis M F, et al. The impact of sex pheromones and insecticides on cotton piercing sucking pests in middle Egypt[J]. Bulletin of Entomological Society of Egypt, 1991, 19:231-236.
    [25]

    Martini A, Baldassari N, Baronio P, et al. Mating disruption of the pine sawfly Neodiprion sertifer (Hymenoptera:Diprionidae) in isolated pine stands[J]. Agricultural and Forest Entomology, 2002, 4:195-201. doi: 10.1046/j.1461-9563.2002.00143.x
    [26]

    Kakizaki M. The sex pheromone components for mating disruption of the rice leaf bug, Trigonotylus caelestialium (Heteroptera:Miridae)[J]. Applied Entomology and Zoology, 2004, 39(2):221-228. doi: 10.1303/aez.2004.221
    [27]

    Fernandez D E, Beers E H, Brunner J F, et al. Horticultural mineral oil applications for apple powdery mildew and codling moth, Cydia pomonella (L.)[J]. Crop Protection, 2006, 25(6):585. doi: 10.1016/j.cropro.2005.08.014
    [28]

    Sharov A A, Roberts E A, Liebhold A M, et al. Gypsy moth (Lepidoptera:Lymantriidae) spread in the central Appalachians:three methods for species boundary estimation[J]. Environmental Entomology, 1995, 24(6):1529-1538. doi: 10.1093/ee/24.6.1529
    [29]

    Mayo J H, Straka T J, Leonard D S. The cost of slowing the spread of the gypsy moth (Lepidoptera:Lymantriidae)[J]. Journal of Economic Entomology, 2003, 96(5):1448-1454. doi: 10.1093/jee/96.5.1448
    [30]

    Tcheslavskaia K S, Thorpe K, Brewster C, et al. Optimization of pheromone dosage for gypsy moth mating disruption[J]. Entomologia Experimentalis et Applicata, 2005, 115(3):355-361. doi: 10.1111/eea.2005.115.issue-3
    [31]

    Thorpe K W, Tcheslavskaia K S, Tobin P C, et al. Persistent effects of aerial applications of disparlure on gypsy moth trap catch and mating success[J]. Entomologia Experimentalis et Applicata, 2007, 125(3):223-229. doi: 10.1111/eea.2007.125.issue-3
    [32]

    Bigsby K M, Ambrose M J, Tobin P C, et al. The cost of gypsy moth sex in the city[J]. Urban Forestry and Urban Greening, 2014, 13(3):459-468. doi: 10.1016/j.ufug.2014.05.003
    [33]

    Femenia-Ferreri B, Bosch D, Moya P, et al. Field assays of a new biodegradable controlled-release pheromone dispensers for mating disruption of Cydia pomonella (L.)[J]. IOBC WPRS Bulletins, 2007, 30:107-114.
    [34]

    Welter S, Cave F. Pheromone mating disruption of Cydia pomonella (L.) in California pears:Balancing dispenser emission rates and program performance[J]. IOBC WPRS Bulletins, 2007, 30:123-124.
    [35]

    Witzgall P, Stelinski L, Gut L, et al. Codling moth management and chemical ecology[J]. Annual Review of Entomology, 2008, 53(1):503-522. doi: 10.1146/annurev.ento.53.103106.093323
    [36]

    Roehrich R, Carles J P, Tresor C. Essai pré-liminaire de protection du vignoble contre Lobesia botrana Schiff. au moyen de la phéromone sexuelle de synthèse (méthode de la confusion)[J]. Revue de Zoologie Agricole et de Pathologie Vegetale, 1977, 76:25-36.
    [37]

    Pasquier D, Charmillot PJ. Survey of pheromone emission from different kinds of dispensers used for mating disruption in orchards and vineyards[J]. IOBC WPRS Bulletins, 2005, 28:335-340.
    [38]

    Ioriatti C, Anfora G, Tasin M, et al. Chemical ecology and management of Lobesia botrana (Lepidoptera:Tortricidae)[J]. Journal of Economic Entomology, 2011, 104(4):1125-1137. doi: 10.1603/EC10443
    [39]

    Cardé R T. Using pheromones to disrupt mating of moth pests, perspectives in ecological theory and integrated pest management[M].Cambridge:Cambridge University Press, 2007:122-169.
    [40]

    Il'ichev A L, Williams D G, Gut L J. Dual pheromone dispenser for combined control of codling moth Cydia pomonella L. and oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) in pears[J]. Journal of Applied Entomology, 2010, 131(5):368-376.
    [41]

    Bohnenblust E, Hull L A, Krawczyk G. A comparison of various mating disruption technologies for control of two internally feeding Lepidoptera in apples[J]. Entomologia Experimentalis et Applicata, 2011, 138(3):202-211. doi: 10.1111/eea.2011.138.issue-3
    [42]

    Evenden M L, Judd G J R, Borden J H. Mating disruption of two sympatric, orchard-inhabiting tortricids, Choristoneura rosaceana and Pandemis limitata (Lepidoptera:Tortricidae) with pheromone components of both species' blends[J]. Journal of Economic Entomology, 1999, 92(2):380-390. doi: 10.1093/jee/92.2.380
    [43]

    Judd G J R, Gardiner M G T. Simultaneous disruption of pheromone communication and mating in Cydia pomonella, Choristoneura rosaceana and Pandemis limitata (Lepidoptera:Tortricidae) using Isomate-CM/LR in apple orchards[J]. Journal of the Entomological Society of British Columbia, 2004, 101:3-13.
    [44]

    Pfeiffer D G, Kaakeh W, Killian J C, et al. Mating disruption to control damage by leafrollers in Virginia apple orchards[J]. Entomologia Experimentalis et Applicata, 2011, 67(1):47-56.
    [45]

    Knight A, Cichon L, Lago J, et al. Monitoring oriental fruit moth and codling moth (Lepidoptera:Tortricidae) with combinations of pheromones and kairomones[J]. Journal of Applied Entomology, 2015, 138(10):783-794.
    [46] 朱虹昱, 徐婧, 张润志.苹果蠹蛾性信息素对梨小食心虫的诱集和迷向作用[J].生物安全通报, 2015, 24(4):320-326.

    [47] 于海利, 张林林, 张国辉, 等.桃小食心虫与金纹细蛾不同性诱芯的诱蛾效果[J].西北农林科技大学学报, 2010, 38(10):121-125.

    [48] 涂洪涛, 张金勇, 陈汉杰, 等.应用性信息素缓释剂迷向防治桃树梨小食心虫研究[J].果树学报, 2012, 29(2):286-290.

    [49] 朱虹昱, 刘伟, 崔艮中, 等.苹果蠹蛾迷向防治技术效果初报[J].应用昆虫学报, 2012, 49(1):121-129.

    [50] 王香萍, 张钟宁.性诱剂迷向法防治高山甘蓝田小菜蛾研究[J].植物保护, 2008, 34(5):110-113. doi: 10.3969/j.issn.0529-1542.2008.05.025

    [51] 李晓龙, 夏国宁, 何建川, 等.复合式膏体迷向剂对梨小、桃小食心虫的防控效果[J].植物保护, 2013, 39(6):147-152. doi: 10.3969/j.issn.0529-1542.2013.06.028

    [52] 王永模, 戈峰, 刘向辉, 等.应用性信息素迷向法防治茶毛虫的田间试验[J].昆虫知识, 2006, 43(1):60-63. doi: 10.3969/j.issn.0452-8255.2006.01.014

    [53] 张日火, 黄其军, 周行飞, 等.性诱剂迷向防治甘蔗条螟的应用[J].甘蔗糖业, 2002(1):13-14. doi: 10.3969/j.issn.1005-9695.2002.01.004

    [54] 田畴, 金桂兰, 贺达汉, 等.亚洲玉米螟的迷向防治研究[J].宁夏农学院学报, 1995, 16(4):19-22.

    [55] 王华志, 余国和, 张万斌, 等.性信息素迷向防治白杨透翅蛾的研究[J].山东林业科技, 1993(4):56-59.

    [56] 蔡述宏.红铃虫性激素迷向技术之改进与设想[J].中国棉花, 1988(5):45-48.

    [57] 杨振亚, 宋其星, 吕金武, 等.板栗桃蛀螟性信息素迷向防治初探[J].落叶果树, 1986(2):45.

    [58]

    Cui G Z, Zhu J W. Pheromone-based pest management in China:past, present and future prospects[J]. Journal of Chemical Ecology, 2016, 42(7):557-570. doi: 10.1007/s10886-016-0731-x
    [59]

    Pfeiffer D G, Killian J C, Rajotte E G, et al. Mating disruption for reduction of damage by lesser peach tree borer (Lepidoptera:Sesiidae) in Virginia and Pennsylvania peach orchards[J]. Journal of Economic Entomology, 1991, 84(1):218-223. doi: 10.1093/jee/84.1.218
    [60]

    Schroeder P C, Shelton A M, Ferguson C S, et al. Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage[J]. Entomologia Experimentalis et Applicata, 2010, 94(3):243-248.
    [61]

    Gut L J, Stelinski L L, Thomson D R, et al. Behavior modifying chemicals:prospects and constraints in IPM[M]. New York:CABI, 2004:73-121.
    [62]

    Nakano R, Takanashi T, Surlykke A. Moth hearing and sound communication[J]. Journal of Comparative Physiology A, 2015, 201(1):111-121. doi: 10.1007/s00359-014-0945-8
    [63]

    Polajnar J, Eriksson A, Virant-Doberlet M, et al. Mating disruption of a grapevine pest using mechanical vibrations:from laboratory to the field[J]. Journal of Pest Science, 2016, 89(4):909-921. doi: 10.1007/s10340-015-0726-3
    [64]

    Borchert D M, Walgenbach J F. Comparison of pheromone-mediated mating disruption and conventional insecticides for management of tufted apple bud moth (Lepidoptera:Tortricidae)[J]. Journal of Economic Entomology, 2000, 93(3):769-776. doi: 10.1603/0022-0493-93.3.769
    [65]

    Brunner J, Welter S, Calkins C, et al. Mating disruption of codling moth:a perspective from the Western United States[J]. IOBC WPRS Bulletins, 2002, 25:1-11.
    [66]

    Cardé R T, Mafra-Neto A, Staten R T, et al. Evaluation of communication disruption in the pink bollworm in field wind tunnels[J]. Bulletin OILB/SROP, 1993, 16(10):23-28.
    [67]

    Cardé R T, Minks A K. Control of moth pests by mating disruption:successes and constraints[J]. Annual Review of Entomology, 1995, 40(1):559-585. doi: 10.1146/annurev.en.40.010195.003015
    [68]

    Onufrieva K S, Thorpe K W, Hickman A D, et al. Gypsy moth mating disruption in open landscapes[J]. Agricultural and Forest Entomology, 2010, 10(3):175-179.
    [69]

    Cork A, De Souza K, Hall D R, et al. Development of PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer, Scirpophaga incertulas[J]. Crop Protection, 2008, 27(2):248-255. doi: 10.1016/j.cropro.2007.05.011
    [70]

    Sartwell C, Daterman G E, Sower L L, et al. Mating disruption with synthetic sex attractant controls damage by Eucosma sonomana (Lepidoptera:Tortricidae:Oletreutinae) in Pinus ponderosa plantations. I. Manually applied polyvinyl chloride formulations[J]. Canadian Entomologist, 1980, 112(2):159-162. doi: 10.4039/Ent112159-2
    [71]

    Felland C M, Hull L A, Barrett B A, et al. Small plot mating disruption trials for tufted apple bud moth, Platynota idaeusalis, in Pennsylvania apple orchards[J]. Entomologia Experimentalis et Applicata, 2011, 74(2):105-114.
    [72]

    Chamberlain D J, Brown N J, Jones O T, et al. Field evaluation of a slow release pheromone formulation to control the American bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae) in Pakistan[J]. Bulletin of Entomological Research, 2000, 90(3):183-190. doi: 10.1017/S0007485300000304
    [73]

    Grassi A, Zini M, Forno F, et al. Mating disruption field trials to control the currant clearwing moth, Synanthedon tipuliformis Clerck:a three year study[J]. Bulletin-OILB/SROP, 2002, 25:69-76.
    [74]

    Doane C C. Controlled-release devices for pheromones[M].New York:Marcel Dekker, 1999:295-317.
    [75]

    Trimble R M, Pree D J, Barszcz E S, et al. Comparison of a sprayable pheromone formulation and two hand-applied pheromone dispensers for use in the integrated control of Oriental fruit moth (Lepidoptera:Tortricidae)[J]. Journal of Economic Entomology, 2004, 97(2):482-489. doi: 10.1093/jee/97.2.482
    [76]

    Il'ichev A L, Stelinski L L, Williams D G, et al. Sprayable microencapsulated sex pheromone formulation for mating disruption of oriental fruit moth (Lepidoptera:Tortricidae) in Australian peach and pear orchards[J]. Journal of Economic Entomology, 2006, 99(6):2048-2054. doi: 10.1093/jee/99.6.2048
    [77]

    Waldstein D W, Gut L J. Effects of rain and sunlight on oriental fruit moth (Lepidoptera:Tortricidae) microcapsules applied to apple foliage[J]. Journal of Agricultural and Urban Entomology, 2004, 21(2):117-128.
    [78]

    Shorey H H, Gerber R G. Disruption of Pheromone Communication through the Use of Puffers for Control of Beet Armyworm (Lepidoptera:Noctuidae) in Tomatoes[J]. Environmental Entomology, 1996a, 25(6):1401-1405. doi: 10.1093/ee/25.6.1401
    [79]

    Shorey H H, Gerber R G. Use of puffers for disruption of sex pheromone communication among navel orange worm moths (Lepidoptera:Pyralidae) in almonds, pistachios, and walnuts[J]. Environmental Entomology, 1996b, 25(5):1154-1157. doi: 10.1093/ee/25.5.1154
    [80]

    Shorey H H, Sisk C B, Gerber R G. Widely separated pheromone release sites for disruption of sex pheromone communication in two species of Lepidoptera[J]. Environmental Entomology, 1996, 25(2):446-451. doi: 10.1093/ee/25.2.446
    [81]

    Knight A L. Managing codling moth (Lepidoptera:Tortricidae) with an internal grid of either aerosol Puffers or dispenser clusters plus border applications of individual dispensers[J]. Journal of the Entomological Society of British Columbia, 2004, 101:69-77.
    [82]

    Shorey H H, Gerber R G. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera:Tortricidae) in walnut orchards[J]. Environmental Entomology, 1996c, 25(6):1398-1400. doi: 10.1093/ee/25.6.1398
    [83]

    Stelinski L L, Gut L J, Haas M, et al. Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta (Lepidoptera:Tortricidae)[J]. Journal of Pest Science, 2007, 80(4):225-233. doi: 10.1007/s10340-007-0176-7
    [84]

    Steinmann K P, Zhang M H, Grant J A, et al. Pheromone-based pest management can be cost-effective for walnut growers[J]. California Agriculture, 2008, 62(3):105-110. doi: 10.3733/ca.v062n03p105
    [85]

    Welter S C, Pickel C, Millar J, et al. Pheromone mating disruption offers selective management options for key pests[J]. California Agriculture, 2005, 59(1):16-22. doi: 10.3733/ca.v059n01p16
    [86]

    Baldessari M, Rizzi C, Tolotti G, et al. Evaluation of an aerosol emitter for mating disruption of Cydia pomonella in Italy[J]. Communications in Agricultural and Applied Biological Science, 2013, 78(2):267-271.
    [87]

    Onufrieva K S, Thorpe K W, Hickman A D, et al. Effects of SPLAT® GM sprayable pheromone formulation on gypsy moth mating success[J]. Entomologia Experimentalis et Applicata, 2010, 136(2):109-115. doi: 10.1111/eea.2010.136.issue-2
    [88]

    Onufrieva K S, Hickman A D, Leonard D S, et al. Efficacies and second-year effects of SPLAT GMTM and SPLAT GMTM organic formulations[J]. Insects, 2015, 6(1):1-12.
    [89]

    Baker T C, Francke W, Löfstedt C, et al. Isolation, identification and synthesis of sex pheromone components of the carob moth, Ectomyelois ceratoniae[J]. Tetrahedron Letters, 1989, 30(22):2901-2902. doi: 10.1016/S0040-4039(00)99153-6
    [90]

    Todd J L, Millar J G, Vetter R S, et al. Behavioral and electrophysiological activity of (Z, E)-7, 9, 11-dodecatrienyl formate, a mimic of the major sex pheromone component of carob moth, Ectomyelois ceratoniae[J]. Journal of Chemical Ecology, 1992, 18(12):2331-2352. doi: 10.1007/BF00984953
    [91]

    Atterholt C A, Delwiche M J, Rice R E, et al. Study of biopolymers and paraffin as potential controlled-release carriers for insect pheromones[J]. Journal of Agricultural and Food Chemistry, 1998, 46(10):4429-4434. doi: 10.1021/jf980642u
    [92]

    Stelinski L L, Miller J R, Ledebuhr R, et al. Mechanized applicator for large-scale field deployment of paraffin-wax dispensers of pheromone for mating disruption in tree fruit[J]. Journal of Economic Entomology, 2006, 99(5):1705-1710. doi: 10.1093/jee/99.5.1705
    [93]

    Atterholt C A, Delwiche M J, Rice R E, et al. Controlled release of insect sex pheromones from paraffin wax and emulsions[J]. Journal of Control Release, 1999, 57(3):233-247. doi: 10.1016/S0168-3659(98)00119-9
    [94]

    Weatherston I, Miller D, Lavoie-Dornik J. Commercial hollow-fiber pheromone formulations:The degrading effect of sunlight on celcon fibers causing increased release rates of the active ingredient[J]. Journal of Chemical Ecology, 1985, 11(12):1631-1644. doi: 10.1007/BF01012117
    [95]

    Chronakis I S. Micro-/nano-fibers by electrospinning technology:processing, properties and applications[M]. Elsevier, 2015:513-548.
    [96]

    Chakraborty S, Liao I C, Adler A, et al. A facile technique to fabricate drug delivery systems[J]. Advanced Drug Delivery Reviews, 2009, 61(12):1043-1054. doi: 10.1016/j.addr.2009.07.013
    [97]

    Kikionis S, Ioannou E, Konstantopoulou M, et al. Electrospun micro/nanofibers as controlled release systems for pheromones of Bactrocera oleae and Prays oleae[J]. Journal of Chemical Ecology, 2017, 43(3):254-262. doi: 10.1007/s10886-017-0831-2
    [98]

    Ridgway R L, Silverstein R M, Inscoe M N. Behavior-modifying chemicals for insect management:applications of pheromones and other attractants[M].New York:Marcel Dekker, 1990.
    [99]

    Jones O T. Practical applications of pheromones and other semiochemicals[M]. Chapman and Hall, London, 1998, 261-355.
    [100]

    Yamanaka T. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests[J]. Population Ecology, 2007, 49(1):75-86. doi: 10.1007/s10144-006-0018-0
    [101]

    Miller J R, Gut L J. Mating disruption for the 21st century matching technology with mechanism[J]. Environmental Entomology, 2015, 44(3):427-453. doi: 10.1093/ee/nvv052
    [102]

    Bento J M S, Parra J R P, de Miranda S H G, et al. How much is a pheromone worth?[J]. F1000Research, 2016, 5:1763. doi: 10.12688/f1000research
    [103]

    Thomson D R, Gut L J, Jenkins J W. Pheromones for insect control[M].New Jersey:Humana Press Inc, 1998, 385-412.
    [104]

    Hathaway D O, Tamaki G, Moffitt H R, et al. Impact of removal of males with sex-pheromone-baited traps on suppression of the peach-twig borer, Anarsia lineatella (Zeller)[J]. Canadian Entomologist, 1985, 117(5):643-645. doi: 10.4039/Ent117643-5
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1) / Tables(2)

Article views(5907) PDF downloads(626) Cited by()

Proportional views

Research Progress and Application Prospect of Insect Sex Pheromone Mating Disruption

    Corresponding author: HE Yu-rong, yrhe@scau.edu.cn
    Corresponding author: WEN Xiu-jun, wenxiujun@scau.edu.cn
  • 1. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • 2. College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China

Abstract:  Objective Application progress, ecological factor and controlling-release carrier types of insect sex pheromone mating disruption are discussed in depth, it could provide technical references for controlling insect pests with the mating disruption technology. Method The application, environmental factors, controlling-release carrier types (capillary, microcapsule, Puffer®, SPLAT®, paraffin, fiber, electrospun/nanofibers) and the mechanism of sex pheromone mating disruption at home and abroad were presented, in addition, the merits and demerits of different controlling-release carrier were indicated. Result Mating disruption of insect sex pheromone is a novel and green technology due to its high efficiency, specificity, environment-friendly and as an important part of Integrated Pest Management. And it has been widely used in Lepidoptera pests control, as well as Coleoptera, Homoptera, Hemiptera, Hymenoptera. Controlling-release carrier and rates are the precondition of sex pheromone mating disruption technology, and the application mechanism was revealed. The economic and policy factor restricting the application of mating disruption is further clarified, so as to provide references for controlling insect pests with sex pheromone mating disruption in China. Conclusion Mating disruption of insect sex pheromone is playing an important role in the pest control, and has a broad prospect.

  • 被称为第3代绿色农药的“昆虫性信息素”在害虫绿色防控中起着非常重要的作用,由于其生物活性高、专一性强、不产生耐药性、对天敌无害、无污染、有利于食品安全、使用简便等特点,人们已经逐渐意识到昆虫性信息素防治害虫的优势及重要性,使得昆虫性信息素技术得到迅速发展[1-3]。目前已鉴定出来的2 000多种昆虫性信息素组分中,以鳞翅目昆虫的最详细,大多数为不饱和脂肪族化合物,碳链长度一般为10~20碳,双键的构型为顺式(Z)、反式(E)、顺反式(Z/E)等,末端功能基多为乙酸酯、醇、醛类或者酮类,少数为丙酸酯或环氧化物,按其分子结构可分为末端有功能基TypeⅠ(夜蛾科、螟蛾科、卷蛾科、巢蛾科等22个科)、末端无功能基TypeⅡ(尺蛾科、毒蛾科、灯蛾科等5个科)和具有侧链的化合物[4-5]

    自1959年,第一个天然性信息素成分—蚕蛾醇(E10Z12-16:OH)被推测出其化学结构后,随之,《Science》和《Nature》便报道了“性信息素迷向干扰法防控害虫”的想法及概念,昆虫通过性信息素相互联络求偶交配,如果能干扰破坏雌雄间化学通讯交流系统,昆虫便不能交配和繁殖后代[6-9]。利用性信息素干扰防控害虫,即使用最佳的缓释装置,均匀速率将其释放至空气中,使空气中到处弥漫性信息素的气味,故而雄虫丧失对雌虫的定向行为能力,或使雄虫的触角长时间接触高浓度的性信息素而处于麻痹状态,失去对雌虫的性召唤反应能力,雌雄成虫无法正常交配,这种交配活动的减少将导致下一代的虫口密度降低,可作为一种有效的害虫防治措施。

    昆虫性信息素的野外应用主要表现为:监测(Monitor)、大量诱捕(Mass trapping)和迷向干扰(Mating disruption),而“监测”和“大量诱捕”要求性信息素具有特定的比例和剂量,尤其对比例的要求更严格,然而“迷向干扰法防控害虫”对性信息素的比例并非严格,即按照雌虫本身释放性信息素的比例、或单一主要组分、或增大次要组分剂量(某些信息素主要组分价格昂贵),并结合合适的缓释装置,便可干扰雄虫对雌虫的交配定位[10-16],因此,寻找合适的信息素组分(比例)、较好的缓释载体及缓释剂型,改善性信息素的应用方式和缓释效果,是迷向干扰防控害虫的重要一环。目前,性信息素迷向干扰防控技术已在许多昆虫(鳞翅目为主)上取得重大突破,连续大面积使用3~5年,可达到最佳效果。本文陈述了国内外迷向技术的应用进展及影响迷向技术开展的生态因素,进而探讨不同缓释载体的剂型,旨在为利用昆虫性信息素迷向干扰害虫提供技术借鉴和参考。

1.   国内外迷向法防控害虫的应用情况
  • 近些年,昆虫性信息素迷向技术已在农业、林业、果树、蔬菜等多种害虫的防控中取得较大成功,自1970年开始,关于迷向干扰法防控害虫的文章、专利等其他科研成果也是逐年递增(图 1),其中,以鳞翅目(Lepidoptera)害虫为主,广泛应用于卷蛾科(Tortricidae)、螟蛾科(Pyralidae)、毒蛾科(Lymantriidae)等多种害虫的绿色防控中(表 1)[17];鞘翅目(Coleoptera)害虫也初步应用了迷向干扰技术进行防控[18-22];此外,同翅目(Homoptera)、半翅目(Hemiptera)、膜翅目(Hymenoptera)害虫也有了相关的性信息素迷向干扰技术报道[23-27]。目前,采用昆虫性信息素迷向法防控害虫应用面积最广的主要为舞毒蛾(Lymantria dispar)、苹果蠹蛾(Cydia pomonella)、葡萄花翅小卷蛾(Lobesia botrana)。自2002至2012年,性信息素迷向防控害虫的应用面积增长率极快,但也有部分害虫的应用情况呈下降趋势,如番茄麦茎蛾Keiferia lycopersicella的应用防控面积下降率达到了80%,目前全球采用性信息素迷向防控害虫的应用面积达到了756 000 hm2,较2002年的433 000 hm2提高了323 000 hm2(表 2)。

    Figure 1.  The Number of publications about mating disruption. (Left: Based on the www.pherobase.com; Right: Based on Google scholar)

    科Family 种类Species 学名Scientific name
    透翅蛾科Sesiidae 3 Ichneumonoptera chrysophanes、Synanthedon tipuliformis、Vitacea polistiformis
    麦蛾科Gelechiidae 5 Tuta absoluta、Scrobipalpopsis solanivora、Sitotroga cerealella、Pectinophora gossypiella、Keiferia lycopersicella
    夜蛾科Noctuidae 5 Spodoptera exigua、Sesamia nonagrioides、Mamestra brassicae、Helicoverpa armigera、Trichoplusia ni
    细蛾科Gracillariidae 3 Cameraria ohridella、Phyllocnistis citrella、Phyllonorycter ringoniella
    卷蛾科Tortricidae 27 Cydia pomonella、Grapholita molesta、et al
    螟蛾科Pyralidae 10 Chilo suppressalis、Plodia interpunctella、et al
    菜蛾科Plutellidae 1 Plutella xylostella
    巢蛾科Yponomeutidae 1 Prays oleae
    潜蛾科Lyonetiidae 1 Leucoptera coffeella
    毒蛾科Lymantriidae 3 Lymantria dispar、Orgyia pseudotsugata、Euproctis pseudoconspersa
    草螟科Crambidae 1 Ostrinia nubilalis
    尺蛾科Geometridae 1 Ascotis selenaria cretacea

    Table 1.  Application examples of pheromone mating disruption for controlling insects (Lepidoptera)

    昆虫种类Species 主要寄主Main host 区域Region 面积Aera/hm2
    2002A 2012B
    舞毒蛾 Lymantria dispar 森林 美国 60 000 200 000
    苹果蠹蛾 Cydia pomonella 苹果、梨 全球 120 000 220 000
    梨小食心虫 Grapholita molesta 梨、苹果、桃 全球 50 000 60 000
    葡萄花翅小卷蛾Lobesia botrana 葡萄 欧洲、智利 41 000 150 000
    环针单纹卷蛾 Eupoecilia ambiguella 葡萄 欧洲、智利 32 000 60 000
    二化螟 Chilo suppressalis 水稻 西班牙 4 000 8 000
    卷叶蛾 Leafroller moths 梨、苹果、桃、茶 美国、日本、澳大利亚、欧洲 24 000 15 000
    棉红铃虫 Pectinophora gossypiella 棉花 美国、以色列、南美洲、欧洲 55 000 19 000
    番茄麦茎蛾Keiferia lycopersicella 番茄 美国 10 000 2 000
    小菜蛾 Plutella xylostella 甘蓝 美国 2 000 2 000
    Synanthedon spp. 桃、杏、黑加仑 全球 5 000 6 000
    Zeuzerina pyrina 梨、橄榄 全球 2 000 3 000
    Endopiza viteana 葡萄 欧洲 1 000 1 000
    其它种类Other species 水果、蔬菜 全球 27 000 10 000
    注:A:基于[39];B:基于Shin-Etsu Corporation

    Table 2.  Worldwide use of mating disruption

    自1869年,舞毒蛾被偶然在美国发现后,迅速在全美地区蔓延,到1970年,超过300多种的树木已被严重取食,传播速度极快,危害面积达7 500万英亩,因此,美国农业部林务局启动STS(Slow the Spread)项目,主要基于信息素迷向及诱捕技术,大大降低了舞毒蛾的传播速度,从每年13英里降低至3英里,约有1.5亿英亩的树木受到保护,具有显著的经济效益和生态效益[28-32];而在1991年,关于苹果蠹蛾信息素迷向干扰装置在美国登记后,100 g·hm-2浓度的信息素可将苹果蠹蛾的种群数量及发生动态控制在不足危害的水平,目前其性信息素年产量可达25 000 kg,防治面积达220 000 hm2,迷向干扰法防治苹果蠹蛾受到全球认可,成为苹果蠹蛾绿色防控技术的关键部分[33-35];葡萄花翅小卷蛾严重制约着欧洲葡萄产业的发展,1977年,法国开始使用迷向干扰技术防治葡萄花翅小卷蛾,但效果较差,主要由于其性信息素主要组分E7Z9-12:AC的化学合成技术遇到困难,化学纯度较低,完善并改进性信息素的化学合成技术后,E7Z9-12:AC按≈50~60 μg·h-1的释放速率可控制葡萄花翅小卷蛾的发生危害,仅在智利,迷向干扰法已应用于40 000 hm2的葡萄园,根除了新发生的种群数量[36-38]

    由于昆虫信息素的专一性,一种迷向剂只对靶标害虫有干扰效果,若对几种害虫同时危害的生态系统,制备每一害虫迷向剂的成本过高,因此,若在害虫发生区放置几种害虫信息素的复合迷向剂,进而对多种害虫产生迷向效果,具有显著的经济效益。如:针对在澳大利亚果园内经常混合发生的苹果蠹蛾和梨小食心虫(Grapholita molesta)的危害,一种载有苹果蠹蛾信息素E8E10-12:OH(215 mg)、12:OH(120 mg)、14:OH(27.5 mg)和梨小食心虫信息素Z8-12:Ac(62.44 mg)、E8-12:Ac(4.6 mg)、Z8-12:OH(0.7 mg)的混合迷向散发器(Isomate® CM/OFM TT,Shin-Etsu Chemical Co. Ltd,Japan),防治效果高于单种害虫独自使用,每公顷500个迷向装置,可取得显著的经济效益[40-41];装有Z11-14:Ac和E11-14:Ac(98:2)的迷向释放器可成功的干扰Choristoneura rosaceanaPandemis limitata的交配[42];Judd等[43]也报道了装有E8E10-12:OH和Z11-14:Ac的散发器,每公顷布置500个,可有效的干扰苹果蠹蛾和4种卷叶蛾[43];此外, 复合迷向技术也在Argyrotaenia velutinana、Platynota flavedana、P. ideausalis等卷叶蛾上均取得了突破性的成功[44]; 但是,在野外诱捕试验(Trapping)中,复合诱芯有时却起到相反的作用,像梨小食心虫和苹果蠹蛾,载有2种昆虫信息素组分的诱芯,显著增加了梨小食心虫的诱捕数量,降低了苹果蠹蛾的诱捕量,这可能是2种昆虫均属卷蛾科,二者在种间信息素组分系统上存在相似之处(12C的共轭二烯醇、单烯醇、单烯乙酸酯),导致苹果蠹蛾的信息素组分影响梨小食心虫的诱捕量[45-46];而桃小食心虫(Carposina niponensis)(果蛀蛾科)和金纹细蛾(Lithocolletis ringoniella) (细蛾科)的单一诱芯均显著高于复合诱芯,相互之间不产生影响[47];因此,不同昆虫之间应根据自身进化、生理行为、寄主选择等,进而选用合适的野外诱捕技术。

    如今,国外迷向技术已在应用面积及害虫种类上取得突破,而国内运用性信息素迷向技术仅仅发生在梨小食心虫、苹果蠹蛾、小菜蛾、桃小食心虫、茶毛虫(Euproctis pseudoconspersa)、甘蔗条螟(Chilo sacchariphagus)、亚洲玉米螟(Ostrinia furnacalis)、白杨透翅蛾(Parathrene tabaniformis)、棉红铃虫(Pectinophora gossypiella)、桃蛀螟(Dichocrocis punctiferalis)等[48-57],其中,迷向干扰防治技术稍加成熟的主要为梨小食心虫和苹果蠹蛾的防控;但自2008—2013年,采用迷向干扰法防控梨小食心虫的应用面积不到200 hm2 [58],尚未形成规范化的迷向防治,其应用面积较少。国内有关化学生态学方面的企业或公司也未见形成大批量生产的信息素迷向干扰产品,其迷向干扰产品主要以毛细管迷向丝为主,尚未报道其他较好的缓释载体。

    当然,迷向干扰防控害虫的失败应用实例也存在,对于一些飞翔力较强的昆虫,迷向防控时效果往往较差,像Synanthedon pictipes、小菜蛾、Anomala orientalis等害虫的迷向干扰工作并未取得理想的效果,防治区的害虫种群密度或作物危害情况并未降低,这种现象主要由于交配雌虫比较方便的可以从周边其他栖息地飞至防治区[19, 59-60],接而进行生长繁殖,故迷向干扰技术的开展理应注意野外的各种生态因素,合理的开展害虫防控。

2.   性信息素迷向防控害虫的影响因素
  • 昆虫性信息素迷向法防治害虫并不是一个简单的现象,它涉及物理学、化学、材料科学、大气学、生物化学、生理学、行为学和生物地理学等,在实际应用过程中会受到多种因素的影响[61],像害虫自身的因素(种群密度、交配行为、雄虫对信息素反应的灵敏度)、环境因素(温度、光照、风速、地势位置),应用面积(大、小)等,若处理不当,防治效果会大减。害虫种群密度的高、低对迷向作用效果显著影响,当种群密度较高时,雄虫和雌虫除了嗅觉外,还可通过触觉、视觉、听觉或危害空间上相近的区域,进行随机交配[62],因此,“机械振动信号”也可作为一种新型的迷向干扰技术,采用人工噪音连续回放,影响害虫的求偶行为和交配行为。如:在欧洲,目前已经由室内实验到野外试验成功干扰了葡萄害虫Scaphoideus titanus的求偶及交配,先通过室内实验确定雄虫的振幅阈值(15 μm·s-1),并多次验证确定有效性,野外试验通过害虫交配活动的昼夜模式深入验证这一阈值,作为一种非化学手段控制这种入侵害虫,具有较好的应用前途[63]

    对于果园中的果树害虫Platynota idaeusalis,当其种群密度较高时,迷向作用未见成效[64];但是,苹果蠹蛾虽然在美国东北地区种群密度较高,迷向法防控时,效果很差,当适当采用杀虫剂压低虫口密度后,再利用迷向法防控种群密度较低的苹果蠹蛾时,效果十分显著,持续防控9年,应用面积从最初的1 000 hm2上升至45 000 hm2[65]。迷向法对于多次交配的害虫,往往效果不佳,主要是因为即使大部分雄虫被干扰,但雌虫尚未受到影响,残留的部分雄虫便可与所有的雌虫进行交配,完成繁殖。野外条件下,若在雌虫释放信息素之前,雄虫连续处在高密度人工合成信息素的条件下,引起雄虫的节律发生变化,这样早熟的雄虫便会降低对雌虫本身释放信息素时的灵敏度[66]。此外,温度、光照、风速、地势位置均可影响迷向效果;持续高温容易导致迷向剂蒸发量增大,影响迷向剂的挥发速率;光照容易导致缓释载体老化,抗光、抗老化的缓释载体类型应为首选;风速过大时,迷向剂散发的气味已被吹散,不能均匀的飘散在田间,部分地区浓度过低时便不会干扰雄虫的定位;由于迷向剂的比重比空气大,因此,地势平坦的田间或林间,便于迷向剂气味扩散。此外,统一规范化的耕作条件、田间应用面积足够大有利于开展迷向干扰技术,且要保证防控区和未防控区的间距,防止未防控区交配后的雌虫飞来产卵,这种现象在果园中比较常见[67];但是对于面积受到限制的公园、住宅区等,若虫口密度较低时(低于林间的虫口密度),也可采取迷向干扰技术,像舞毒蛾的雄虫和雌虫在间隔1 m的树上进行危害时,迷向技术可行,若雄虫和雄虫在空间上相距较近时,这些迷向技术便失效[68]

3.   性信息素迷向防控害虫的缓释载体类型
  • 野外布置昆虫性信息素迷向缓释装置的方式主要有2种:密集分布(面释放)和稀疏分布(点释放),前者是每公顷布置300~1 000个散发器,释放速率为ng级,主要依靠散发器本身将信息素均匀的释放到空气中;后者主要布置几个或几十个中央散发器,释放速率为mg级,通过风力作用将信息素组分在空气中完成再分配,进而大面积分布在空气中。因此,昆虫性信息素散发器的分布差异,就严格要求性信息素组分在缓释载体的释放率和分布情况,若采用不当,可能导致无效的迷向作用。

    缓释载体是开展性信息素迷向干扰技术的重要一环,由于昆虫性信息素不仅是挥发性较强的化学物质,而且大部分具有特殊性的末端官能团,容易导致发生异构化并降解进而失效,所以缓释载体既要保证信息素组分与其具有较高的粘附力,又不能和性信息素组分发生异构化反应,还要保证信息素组分在野外具有均匀、稳定、持续的挥发速率,确定长期释放,在时间和空间上达到防治害虫的目的。所以,应根据不同的性信息素组分结构类型,选择合适的迷向缓释载体。

  • 毛细管迷向丝,将信息素装入到毛细管中,然后两端封口,通过高分子材料的物理缓释作用,调控信息素的释放速率,目前使用较多的为PVC管,其释放率相对恒定,具有良好的点源特性,信息素的利用率较高,可以根据释放速率、持效期、田间的稳定性等进行设计,持效期可以通过毛细管的长短来调节。这类剂型的迷向作用属于密集分布,每公顷均需布置多根迷向丝,必要时分树冠、树中和树下进行悬挂,国内的迷向技术大多数采用该剂型防控害虫,其持效期约为2~3个月,一个生长季需人工操作2~3次,工作量和经济成本较高;由于PVC自身物理参数的影响,其装载的信息素组分随着碳链长度和温度的升高,反射出性信息素化合物蒸发热(△H)之间的差异,数据显示PVC用于一系列12C至16C的脂肪链化合物时,仍有一定的限制条件[69];此外,对于一些不稳定的醛类化合物或不饱和化合物,保护剂的缺少,容易导致PVC管中信息素化合物的分解,野外环境下,添加保护剂Waxoline Black至PVC管中,可有效增加化合物的稳定性[69-70];虽然PVC可以搭载多个较大分子量的性信息素化合物,但14C乙酸酯和16C碳烯醛化合物装入PVC管中,便可发挥出比较理想的挥发速率,降低性信息素自身降解的损失量[71-73]

  • 微胶囊包埋技术是用天然高分子、半合成高分子或合成高分子的成膜材料,将固体、液体甚至是气体的物质进行包埋,封存在一种具有半透性或密封性的囊膜内,成为一种微小粒子的新型技术。根据微小粒子粒径的不同(5~200 μm),可分为纳米胶囊、微粒、微球等[74]。包在微胶囊内部的物质称为芯材,外部包囊的壁膜材料称为壁材,壁厚通常为0.2 ~10 μm,常用的壁材材料有壳聚糖、阿拉伯树胶、辛烯基琥珀酸淀粉钠、乳化变性淀粉、麦芽糊精等。根据微胶囊的性质、囊壁形成机理可将微胶囊的制备方法分为3大类:物理法(静电沉积法、沸腾床涂布法、空气悬浮法、离心挤压法、旋转悬挂分离法、气相沉积法等)、化学法(复凝聚法、单凝聚法、界面聚合法、原位聚合法、锐孔凝固浴法、乳化法等)、物理化学法(相分离法、溶剂蒸发法、界面沉积法以及喷雾干燥法等)。昆虫性信息素微胶囊包埋处理后,在包膜内形成胶囊,进而转化为稳定性的水溶性溶液,通过包膜释放到外界环境中,一般情况下,每公顷信息素的含量约20~100 g,目前应用最成功的为梨小食心虫的迷向防控[75-76],其优点是迷向效果显著、环境污染小、单次使用节省工作量,但野外持续时间较短(3~4周),成本较高,且喷洒在树上的胶囊易受雨水冲刷和外界环境因素(紫外线、氧化、高温等)的影响[77],因此,在整个生长季中需多次使用,才能达到对雄虫的抑制作用。

  • Puffer®(Suterra LLC, Bend, OR, USA)是一种自动化的载有信息素组分的喷雾气压装置,可有效的干扰害虫的交配、定位,主要包括时控装置、气压装置和电池,每公顷放置2~2.5个,节省劳动力,一般从下午15:00开始释放(周期12 h),每15 min自动喷洒1次,每次喷洒5~10 mg,已应用于甜菜夜蛾(Spodoptera exigua)、Amyelois transitellaPlatynota stultana、苹果蠹蛾等多种害虫的迷向防治试验中[78-81];Shorey等[82]证明了16 hm2的核桃园中,每公顷放置2.3个Puffer®,每天总计释放240 mg的E8E10-12:OH,可对苹果蠹蛾的迷向干扰率达到95%~98%,但是Stelinski等[83]在果园采用Puffer®迷向干扰防控苹果蠹蛾,2年的迷向率分别为24%~26%(2005年)和46%~75%(2006年),对苹果蠹蛾尚未达到较好的迷向作用,可能是由于核桃树较高、冠幅较大,降低了风速,减少了信息素的损失,更充分的分散在核桃园的空气中[83].此外,基于对美国加州农药监管部门的数据分析(3年),连续使用Puffer®不仅和传统的化学农药在价格上持平,更重要的是,Puffer®的有效期可达180 d[84],且每个Puffer®装置的有效辐射面积可达到:长(1 500英尺)×宽(300~500英尺),高效环保,节省了大量的人力和物力[85]。目前,Puffer®已在美国多个大型农场及果园连续使用多年防控苹果蠹蛾,2013年2月7日,Puffer®在意大利登记后,也已广泛应用于意大利的各个果园中防控苹果蠹蛾[86]。如今研究学者正在尝试使用一些高分子聚合物的缓释袋,搭载更多的信息素,避免Puffer®中的电池和其他部件的使用[85]

  • SPLAT®(Specialized Pheromone and Lure Application Technology,ISCA Technologies,Riverside,USA)是一种可控性的化学缓释技术,自2004年起广泛应用于多种害虫的防控中,其缓释载体是一种乳化膏状,具有流变特性,由于自身特性,搅拌时粘性较低,当其应用到物体表面时,快速变稠,粘附力极强,它可以混合性信息素、利它素、驱避剂、杀虫剂及一些添加剂等,合理控制释放速率,并防止其活性组分发生化学反应,成本低,生物降解性极高,可通过人工和机械操作,主要应用技术为:膏体直接涂抹、填缝枪打入、拖拉机涂布、飞机喷洒(直径为5 cm的圆状物)。目前,SPLAT®产品主要以迷向干扰和诱杀害虫(鳞翅目和鞘翅目)为主,其中用于迷向的主要包括:SPLAT®GM、SPLAT®OFM、SPLAT®Cydia、SPLAT®Tuta(Tuta absoluta)、SPLAT®EC(Ectomyelois ceratoniae)、SPLAT®LBAM(Epiphyas postvittana)、SPLAT®CLM(Phyllocnistis citrella)等,这些产品均在害虫的迷向防控中取得了较好的经济效益,如2006—2008年,连续3年在美国弗吉尼亚州使用SPLAT®GM迷向防控舞毒蛾,每公顷7.5 g的有效信息素成分,雌虫的减少率达到99%,90%以上的监测装置均无法引诱到雄虫,成功的抑制了舞毒蛾的发生与危害,因此,SPLAT®GM作为美国STS项目的主要使用对象,随即2009年,利用SPLAT®GM应用面积达到了41 000 hm2[87-88];SPLAT®EC主要以信息素类似物作为主要组分迷向防控石榴螟(Ectomyelois ceratoniae),虽然石榴螟的信息素活性组分为Z9E11、13-14Ald,Z9E11-14Ald,Z9-14Ald[89],但是类似物Z7E9、11-12-formate可以更有效的模拟其信息素组分的主要功能[90]。对于每2周喷洒农药的处理区和迷向干扰处理区,每610 g·hm-2的SPLAT®EC,分树顶和距离地面1.5 m的树干涂抹,迷向干扰处理区的诱捕装置均无法引诱到雄蛾,但喷洒农药的处理区雄蛾最高诱捕量单个诱捕装置可达80多头,且SPLAT®EC使用的价格基本和多次喷洒农药的费用持平,但SPLAT®EC一次涂抹,节省了大量的劳动力。目前,SPLAT®仍致力于开发新型的害虫迷向缓释技术,为害虫的绿色防控及迷向干扰提供更佳的产品。

  • 蜡滴也可作为昆虫性信息素迷向干扰防控害虫的缓释载体[91],制作方法为:将石蜡加热融化后,加入昆虫性信息素、豆油、维生素E(抗氧化剂)等,然后迅速搅拌均匀,添加去离子水配制成乳化型溶液,野外试验前还需添加粘合剂,以确保蜡滴更好的被枝干或树叶所粘附,目前喷洒蜡滴的装置主要为机械枪和大型卡车涂药器;卡车涂药器防控梨小食心虫时,其作用时间与生长季节密切相关,5—6月干扰效果可达52 d,但在7—8月,迷向作用仅维持7 d左右,其主要原因是机械喷施到植物表面的蜡滴体积较小,高温导致蜡滴急速挥发,持效期较短[92]。Atterholt等报道了含有梨小食心虫的石蜡乳化液,在室内温度27℃时,缓释时间可达100多天,平均每天的释放速率为0.4~2 mg,当温度超过38℃,持效期缩短,性信息素组分被氧化,这主要受信息素的释放速率、石蜡的分配系数、性信息素在石蜡中溶解度的影响。所以,可根据不同季节或野外温度的高低设置不同控释方式,尽量消除温度的影响[93]

    空心纤维由一种celcon材料加工而成的毛细管装置,这种装置可用来迷向干扰害虫,但需满足几个条件:(1)毛细管的内壁必须光滑;(2)有效长度内,毛细管的参数必须保持一致;(3)毛细管本身不能对信息素有吸附现象;(4)防治紫外线的催化降解。若材料选择不当,便会导致大部分空心纤维装置的释放速率过快[94]

  • 静电纺丝/纳米纤维技术(Electrospun/Nanofibers)主要是指将带电荷的聚合物溶液或者熔体在高压电场力驱使下产生变形,当液滴表面受到的电场力大于表面张力时形成喷射流,在经过拉伸和溶剂挥发,固化形成纤维的过程[95]。目前,静电纺丝制备的超细纳米纤维具有高比表面积、多孔结构及增强的物理-机械性能等特点,可将有效活性物质分散在纳米纤维基体中或用纤维膜包裹,有效活性物质伴随着纤维载体材料的降解而逐步释放出来并保持效果不变,这种释放方式不仅能够显著提高有效活性成分的溶解度、增加有效活性成分稳定性,还能够有效控制活性成分的释放速度及有效期[96]。如今,已有数百种天然高分子、合成聚合物、无机物以及其他的复合物通过静电纺丝技术制成了纳米纤维,纤维直径分布可以控制在几纳米到几微米,该技术已作为一种新型的缓释载体初步应用于昆虫信息素方面的研究,希腊学者报道了该技术在橄榄果实蝇(Bactrocera oleae)和橄榄巢蛾(Prays oleae)的防控上取得的显著效果,持久释放,至少可达16周,生物聚合物缓释载体和信息素剂量的选择将会对装置的释放速率和有效时间造成影响[97]

4.   展望
  • 如今,迷向干扰法防控害虫已经有40多年的历史,且近20多年全球有了显著的商业化生产,利用昆虫性信息素的高剂量,干扰害虫的交配行为,在实践中也取得了一些突破与成功,但关于野外迷向作用仍处于尝试阶段,且迷向法防控害虫的作用机制尚未明确,科学家们也仅提出了3种假说:混淆、掩饰和错误跟随。混淆是雄虫长时间的处于高剂量的性信息素状态下,触角接受气味受体发生变化或者适应了目前的中枢神经系统;掩饰是雄虫失去对雌虫的定位,由于人工合成的性信息素改变或掩饰了雌虫自然状态下释放性信息素的化学结构;错误跟随主要是一种行为反应,雄虫锁定并跟随人工制造的仿生装置,取代了活雌虫,因此,雄虫将会浪费更多的时间及生命力尝试寻找雌虫,进而完成交配。这3种假说并不完全孤立,在某种程度上实际是协同作用的[98-100]。最近,在一系列有利推断及野外严格应用的原则下,害虫迷向干扰机制有了新的进展,可从嗅觉感受信号及酶之间的相互作用进行阐述,主要划分为2个主要的类别:竞争结合和非竞争结合,前者是雄虫或雌虫在野外状态下尚未经历一些障碍,雄虫可以直接对雌虫或诱捕装置起反应,雌虫或诱捕装置的比例是非常重要的,提出害虫控制与害虫密度之间的联系;后者是雄虫或雌虫在性活动的初始,便受到干扰,对于害虫控制与害虫密度之间的关系,非竞争条件下可以得到更为突出的优势,故而产生剂量反应曲线将作为一种更好的方式区分竞争和非竞争条件下的迷向干扰[101]。目前,迷向干扰防控害虫主要集中于该技术在野外条件上的有效性,因此,需要科研工作者在接下来的工作中,不仅证明这一技术在缓释载体和其他害虫上取得的野外效果,更重要的是,为害虫之间的迷向干扰提供有效的作用机制[67]

    当下,限制昆虫性信息素迷向法防控害虫的因素主要是科学研究和经济政策:科学研究主要包括缓释载体的释放速率、缓释载体的选择、雌虫释放信息素的含量、雄虫触角感受信息素的专一性程度以及关于昆虫性信息素迷向干扰的化学机制等问题。经济政策主要包括:昆虫信息素与化学农药之间的价格差异,其他生物防虫技术是否比信息素更便宜,而价格是限制迷向干扰产品的重大因素[102],因此,大规模生产昆虫性信息素化合物,提炼出更简便、产率较高的化学合成技术,是较关键的一步;迷向干扰技术在多数重要害虫上也取得了成功,在当前国家大力实行农业补贴的趋势下,是否可以考虑加大给予政府补贴措施。除此之外,昆虫性信息素登记一直是全球所面临的难题,迷向干扰产品的登记问题是否简化或调和,美国已经在昆虫信息素登记问题上趋于合理化,但是对于一些国家政府,在关于昆虫信息素的登记问题上,仍然与传统的化学农药一致[103]

    当然,从野外实际应用的作用效果来看,迷向干扰法防控害虫不可能把害虫发生危害控制到零[104],迷向剂防治害虫针对性强,必要时可根据实际情况及时使用化学农药补充防治,尽量将虫害程度控制到允许发生的范围内。限制我国昆虫信息素迷向防控害虫的主要根源在于缓释载体不稳定且比较单一(PVC),尚未研制出规范化及多用化的缓释载体,大部分高效的缓释载体全靠国外进口。此外,如果部分害虫信息素组分化学结构复杂、合成工艺较难、成本较高,便可采用靶标昆虫信息素类似物或者抑制剂,前者由于有些化合物的结构、性质和靶标昆虫信息素组分极为相似,雄虫对这部分化合物也有较强的反应,采用这部分化合物进行迷向防治试验,这些类似物相对信息素组分合成工艺简便,价格合理;后者是部分化合物直接干扰雄虫的寄主定位行为,雄虫无法通过信息素寻找到雌虫,起到较好的迷向干扰,具体使用何种迷向剂,主要取决于某种昆虫的嗅觉反应及行为趋向,进而在野外得到较好的干扰作用。因此,改进迷向剂、缓释载体和释放速率等试验不断展开,急需我国科研工作者在这方面开拓出更有效且经济的迷向剂和缓释装置,进而奠定昆虫信息素迷向干扰防控害虫的基础。

    利用昆虫信息素迷向干扰防治害虫无疑是今后林业发展的重要方向,作为害虫综合防治体系的有效部分,高效安全、环境友好,可以减少化学农药的使用,为害虫绿色防控新技术提供了技术支持。随着农业航空技术(无人机)的高速发展,高效且经济实用的缓释载体剂型不断被研制出,其应用价值在于降低污染,保护天敌,兴益除害,减少农户工作量。具有显著的经济效益、生态效益和社会效益。

Reference (104)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return