• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 31 Issue 6
Jul.  2019
Article Contents
Turn off MathJax

Citation:

UPLC-QTOF-MS Analysis of Flowers and Leaves of Camellia nitidissima

  • Received Date: 2018-02-26
  • Objective To identify and analyze the main chemical components, their contents and change in the flowers and leaves of Camellia nitidissima, and to provide the basis for further exploitation and utilization of C. nitidissima. Method The components and contents of anthocyanins, flavonoids and catechins in the flowers and leaves of C. nitidissima were qualitatively and quantitatively analyzed by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. Result Cyanidin-3-O-glucoside and pelargonium-3-O-glucoside were identified in C. nitidissima for the first time, and cyanidin-3-O-glucoside was only found in the new purple leaves. Luteolin-7-O-rutinoside and genistin were identified in C. nitidissima for the first time, and the quercetin-3-O-glucoside, quercetin-7-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-glucoside were found in leaves of C. nitidissima for the first time. The contents of anthocyanins between petals and stamens had no obvious difference, but were lower than that in leaves, especially new leaves. Instead, the contents of catechins in flowers were well higher than that in leaves, especially new leaves. The contents of total flavonoids, quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-glucoside between petals and stamens had no obvious differences, but were far higher than that in leaves. The contents of total flavonoids and luteolin-7-O-rutinoside which was the main flavonoids in new leaves were significantly higher than that in old leaves. Conclusion Two anthocyanins, six flavonoids and two catechins are identified in C. nitidissima. The quercetin-3-O-glucoside and other flavonoids are the main cause of the yellow color of flowers, and the cyanidin-3-o-glucoside is the main cause of the purple color of new leaves of C. nitidissima.
  • 加载中
  • [1] 张宏达, 任善湘.中国植物志:第49卷第3分册[M].北京:科学出版社, 1998:101-112.

    [2]

    Lin J N, Lin H Y, Yang N S, et al. Chemical constituents and anticancer activity of yellow Camellias against MDA-MB-231 human breast cancer cells[J]. Journal of Agricultural & Food Chemistry, 2013, 61(40):9638-9644.
    [3]

    He D Y, Wang X T, Zhang P, et al. Evaluation of the anxiolytic and antidepressant activities of the aqueous extract from Camellia euphlebia Merr. ex Sealy in mice[J]. Evidence-Based Complementray and Alternative Medicine, 2015, 11:1-8.
    [4]

    Song L X, Wang X S, Zheng X Q, et al. Polyphenolic antioxidant profiles of yellow Camellia[J]. Food Chemistry, 2011, 129(2):351-357. doi: 10.1016/j.foodchem.2011.04.083
    [5]

    He D Y, Li X Y, Xuan S, et al. Camellia nitidissima, C.W. Chi:a review of botany, chemistry and pharmacology[J]. Phytochemistry Reviews, 2018, 17(2):327-349.
    [6]

    Qi J, Shi R F, Yu J M, et al. Chemical constituents from leaves of Camellia nitidissima and their potential cytotoxicity on SGC7901 Cells[J]. Chinese Herbal Medicines, 2016, 8(1):80-84. doi: 10.1016/S1674-6384(16)60012-6
    [7] 彭晓, 于大永, 冯宝民, 等.金花茶花化学成分的研究[J].广西植物, 2011, 31(4):550-553. doi: 10.3969/j.issn.1000-3142.2011.04.025

    [8]

    Hashimoto F, Tanaka M, Maeda H, et al. Changes in flower coloration and sepal anthocyanins of cyanic Delphinium cultivars during flowering[J]. Bioscience Biotechnology and Biochemistry, 2002, 66(8):1652-1659.
    [9]

    Wang L S, Heshimoto F, Shiraishi A, et al. Chemical taxonomy in Xibei tree peony from China by floral pigmentation[J]. Journal of Plant Research, 2004, 117(1):47-55. doi: 10.1007/s10265-003-0130-6
    [10] 张维冰, 王智聪, 张凌怡.超高效液相色谱-二极管阵列检测-串联质谱法测定菊花中的10种咖啡酰基奎宁酸和22种黄酮类化合物[J].分析化学, 2013, 41(12):1851-1861.

    [11] 李蓓佳, 向诚, 杨秀伟, 等.应用高效液相色谱-质谱联用技术研究通脉颗粒的指纹图谱[J].药学学报, 2010, 45(11):1410-1414.

    [12]

    Zhou X W, Fan Z Q, Chen Y, et al. Functional analyses of a flavonol synthase-like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation[J]. Journal of Biosciences, 2013, 38(3):593-604. doi: 10.1007/s12038-013-9339-2
    [13] 应震, 张晶, 殷恒福, 等.茶花红叶芽变品种'金华美女'叶色突变相关主要化学成分含量变化[J].园艺学报, 2017, 44(4):723-732.

    [14] 龚加顺, 隋华嵩, 彭春秀, 等. "紫娟"晒青绿茶色素的HPLC-ESI-MS分离鉴定及其稳定性研究[J].茶叶科学, 2012, 32(2):179-188. doi: 10.3969/j.issn.1000-369X.2012.02.014

    [15] 解东超, 戴伟东, 李朋亮, 等.基于LC-MS的紫娟烘青绿茶加工过程中花青素变化规律研究[J].茶叶科学, 2016, 36(6):603-612. doi: 10.3969/j.issn.1000-369X.2016.06.007

    [16]

    Li J B, Hashimoto F, Sakata Y. Anthocyanins from red flowers of Camellia reticulata L[J]. Bioscience Biotechnology & Biochemistry, 2007, 71(11):2833-2836.
    [17]

    Li J B, Hashimoto F, Shimizu K, et al. Anthocyanins from red flowers of Camellia cultivar 'Dalicha'[J]. Phytochemistry, 2008, 69(18):3166-3171. doi: 10.1016/j.phytochem.2008.03.014
    [18]

    Li J B, Hashimoto F, Shimizu K, et al. A new acylated anthocyan inform the red flowers of Camellia hongkongensis and characterization of anthocyanins in the Section Camellia species[J]. Journal of Plant Ecology, 2009, 51(6):545-552.
    [19] 夏星, 黄嘉骏, 王志萍, 等.金花茶叶的降血糖作用及急性毒性研究[J].时珍国医国药, 2013, 24(5):1281-1282.

    [20] 柴胜丰, 唐健民, 陈宗游, 等.毛瓣金花茶叶片化学成分及生理活性物质分析[J].食品科技, 2016, (3):110-114. doi: 10.3969/j.issn.1000-1085.2016.03.037

    [21]

    Sangwan N S, Shanker S, Sangwan R S, et al. Plant-derived products as antimutagens[J]. Phytotherapy Research, 2015, 12(6):389-399.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(3304) PDF downloads(242) Cited by()

Proportional views

UPLC-QTOF-MS Analysis of Flowers and Leaves of Camellia nitidissima

  • 1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
  • 2. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Abstract:  Objective To identify and analyze the main chemical components, their contents and change in the flowers and leaves of Camellia nitidissima, and to provide the basis for further exploitation and utilization of C. nitidissima. Method The components and contents of anthocyanins, flavonoids and catechins in the flowers and leaves of C. nitidissima were qualitatively and quantitatively analyzed by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. Result Cyanidin-3-O-glucoside and pelargonium-3-O-glucoside were identified in C. nitidissima for the first time, and cyanidin-3-O-glucoside was only found in the new purple leaves. Luteolin-7-O-rutinoside and genistin were identified in C. nitidissima for the first time, and the quercetin-3-O-glucoside, quercetin-7-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-glucoside were found in leaves of C. nitidissima for the first time. The contents of anthocyanins between petals and stamens had no obvious difference, but were lower than that in leaves, especially new leaves. Instead, the contents of catechins in flowers were well higher than that in leaves, especially new leaves. The contents of total flavonoids, quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-glucoside between petals and stamens had no obvious differences, but were far higher than that in leaves. The contents of total flavonoids and luteolin-7-O-rutinoside which was the main flavonoids in new leaves were significantly higher than that in old leaves. Conclusion Two anthocyanins, six flavonoids and two catechins are identified in C. nitidissima. The quercetin-3-O-glucoside and other flavonoids are the main cause of the yellow color of flowers, and the cyanidin-3-o-glucoside is the main cause of the purple color of new leaves of C. nitidissima.

  • 金花茶(Camellia nitidissima Chi)为山茶科(Theaceae)山茶属(Camellia L.)金花茶组(Sect. Chrysantha Chang)植物,其花色金黄,富蜡质光泽,叶色碧绿,新叶紫红色,具有较高的观赏价值,为世界著名的珍稀植物、国家一级保护植物[1]。与山茶属山茶(C. japonica L.)、茶梅(C. sasanqua Thunb.)等相比,金花茶类花朵和叶片中含有类黄酮、茶多酚及茶多糖等多种活性成分,具有降血糖、降血脂、降血压和抗肿瘤等药理功效[2-4]。因此,金花茶化学成分的研究对进一步开发其药用、食用价值,提高经济附加值具有重要意义。

    目前,关于金花茶化学成分的研究主要集中于类黄酮、多糖、多酚、皂苷等总含量及成分鉴定方面[5-7],而关于金花茶花朵、叶片化学成分含量及其变化特征尚不清楚,极大地限制了金花茶活性成分的开发利用。因此,本试验以金花茶花朵和叶片为材料,利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术分析金花茶花瓣、雄蕊、老叶和新叶中花青苷、类黄酮及儿茶素类等化学成分,明确其主要成分、含量及其变化特征,探讨其与花色、叶色之间的关系,以期为金花茶资源的进一步开发利用提供科学依据。

1.   材料与方法
  • 试验材料为金花茶老叶、当年生新叶和盛开期花朵;其老叶碧绿色,当年生新叶紫红色,花朵金黄色,花朵分为花瓣和雄蕊部分,所有材料均来源于中国林业科学研究院亚热带林业研究所山茶种质资源库。选取生长状况一致的金花茶5株,每株采摘树冠外围南面枝条上老叶、当年生新叶及盛开期花朵各3个进行试验。

  • 标准品矢车菊素(纯度≥97%)、矢车菊素-3-O-葡萄糖苷(纯度≥99.05%)购于上海安谱实验科技股份有限公司;槲皮素-3-O-葡萄糖苷、槲皮素-3-O-芸香糖苷、槲皮素-7-O-葡萄糖苷、山柰酚-3-O-葡萄苷和天竺葵素-3-O-葡萄糖苷购于Sigma公司,纯度≥97%;儿茶素和表儿茶素购于北京索莱宝科技有限公司,纯度≥97%。有机溶剂甲醇、四氢呋喃、甲酸、丙酮、磷酸均购于国药集团化学试剂有限公司,色谱纯甲醇、丙酮、乙腈购于上海安谱实验科技股份有限公司。

  • 试验仪器、设备为ACQUITYTM UPLC I-Class超高效液相色谱系统(Waters Corporation,Milford,MA,USA),Xevo G2-XS QTof MS质谱系统(Waters Corporation,Manchester,UK),UNIFI 1.8软件系统;Milli-Q-Gradient超纯水制备系统。

  • 称取新鲜花朵、叶片各0.6 g,分别加液氮研磨成粉末,溶于甲醇:水:甲酸:THF(70:27:2:1,体积比)的提取溶剂2 mL[8],每隔12 h振荡1次,24 h后依次用滤纸及0.22 μm滤膜过滤,滤液保存在-20℃冰箱备用[9]。利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术对花朵和叶片中花青苷、类黄酮及儿茶素类等化学成分进行定性与定量分析。色谱柱为ACQUITY BEH C18(2.1 mm × 100 mm,1.7 μm),以0.1%甲酸水溶液(A)和乙腈(B)为流动相,洗脱程序为0~1.5 min,5% B;1.5~11 min,5%~40% B;11~14 min,40%~95% B;14~16.5 min,95% B;16.5~16.8 min,95%~5% B;16.8~20 min,5% B。电喷雾电离离子源(ESI),准确质量数用亮氨酸脑啡肽作校正液。离子化模式为正离子,离子源温度为120 ℃,脱溶剂气体为高纯度氮气,温度为450 ℃,流速为600 L·h-1,毛细管电压为1 kV,锥孔电压为40 V,扫描范围(m/z)为50~1 200 u。低能量扫描时电压为6 eV,高能量扫描时电压为20~45 eV。数据采集模式为Continuum模式。

  • 建立儿茶素、表儿茶素、矢车菊素、矢车菊素-3-O-葡萄糖苷、槲皮素-3-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷标准曲线进行定量计算(表 1),花青苷天竺葵素-3-O-葡萄糖苷按照矢车菊素标准曲线进行分析,类黄酮木犀草素-7-O-芸香糖苷和染料木苷按照槲皮素-3-O-葡萄糖苷标准曲线进行分析,重复5次,计算各成分含量。

    化合物 Compounds 标准曲线 Standard curve R2 线性范围 Linear range /(μg·mL-1)
    儿茶素 Catechin y=13 588.8x+101.611 0 0.999 5 0.00150
    表儿茶素 Epicatechin y=16 379.2x+77.544 0 0.999 3 0.001100
    矢车菊素 Cyanidin y=164 456.0x-126.993 0 0.999 2 0.000 420
    矢车菊素-3-O-葡萄糖苷 Cyanidin-3-O-glucoside y=29 434.5x-0.376 0 0.999 6 0.000 210
    槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside y=19 209.2x+51.142 4 0.999 3 0.00150
    槲皮素-3-O-芸香糖苷 Quercetin-3-O-rutinoside y=45 456.4x+116.378 0 0.999 1 0.00150
    山柰酚-3-O-葡萄糖苷 Kaempferol-3-O-glucoside y=21 177.9x+53.684 8 0.999 3 0.000 210

    Table 1.  Standard curve of 7 compounds

2.   结果与分析
  • 利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术对金花茶花朵和叶片花青苷、类黄酮及儿茶素类等活性成分进行定性分析,根据UPLC-QTOF-MS和MS图谱,参考相关文献,对其主要成分进行结构鉴定,其质谱数据见表 2。共检测到10种主要成分,除成分4和成分10外,其余7种均有标准品作为对照。比对标准品,成分1和成分3分别为儿茶素和表儿茶素。成分2和成分6为花青苷,其中,成分2质谱数据为分子离子峰m/z值449.11,碎片离子m/z 287.06,判断其为矢车菊素-3-O-葡萄糖苷;成分6质谱数据为分子离子峰m/z值433.11,特征碎片离子m/z 271.06,判断其为天竺葵素-3-O-葡萄糖苷。

    成分
    No.Components
    保留时间
    Retention time/min
    分子离子
    Molecular ions(m/z)
    碎片离子
    Fragment ions (m/z)
    化合物结构
    Tentative identification
    1 3.56 291.09 247.06 儿茶素* Catechin
    2 3.99 449.11 287.06 矢车菊素-3-O-葡萄糖苷* Cyanidin-3-O-glucoside
    3 4.51 291.09 163.03 表儿茶素* Epicatechin
    4 4.72 595.17 287.06 木犀草素-7-O-芸香糖苷 Luteolin-7-O-rutinoside
    5 5.77 611.16 303.05 槲皮素-3-O-芸香糖苷* Quercetin-3-O-rutinoside
    6 5.82 433.11 271.06 天竺葵素-3-O-葡萄糖苷* Pelargonium-3-O-glucoside
    7 5.93 465.11 303.05 槲皮素-3-O-葡萄糖苷* Quercetin-3-O-glucoside
    8 6.54 449.11 287.06 山柰酚-3-O-葡萄糖苷* Kempferol-3-O-glucoside
    9 6.77 465.10 303.05 槲皮素-7-O-葡萄糖苷* Quercetin-7-O-glucoside
    10 6.80 433.11 271.06 染料木苷 Genistin
      注:*为有标准品对照的成分。
      Note: *Represent the standard control compounds.

    Table 2.  The UPLC-QTOF-MS data of the main compounds in the flowers and leaves of C. nitidissima

    成分5、成分7、成分8和成分9均为类黄酮,分别是槲皮素-3-O-芸香糖苷、槲皮素-3-O-葡萄糖苷、山柰酚-3-O-葡萄糖苷和槲皮素-7-O-葡萄糖苷。无标准品对照的成分4质谱数据为分子离子峰m/z值595.17,特征碎片离子m/z 287.06,与张维冰等[10]鉴定木犀草素-7-O-芸香糖苷HPLC-MS结果相同,推定其为木犀草素7-O-芸香糖苷;成分10质谱数据为分子离子峰m/z值433.11,特征碎片离子为m/z 271.06,与李蓓佳等[11]鉴定染料木苷HPLC-MS结果相同,推定其为染料木苷。

  • 金花茶花朵和叶片中花青苷、类黄酮与儿茶素成分含量见表 3。花青苷矢车菊素-3-O-葡萄糖苷主要存在于新叶中,花瓣和雄蕊中未检测到;天竺葵素-3-O-葡萄糖苷在叶片中的含量高于花朵,但花瓣和雄蕊中及老叶和新叶中含量均差异不大。类黄酮槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷在花朵中的含量均远高于叶片,其中,槲皮素-3-O-葡萄糖苷在花瓣和雄蕊中含量无明显差异,槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷在雄蕊中含量分别是花瓣中的1.59倍和1.96倍,槲皮素-7-O-葡萄糖苷在花瓣中含量是雄蕊中的7.13倍;木犀草素-7-O-芸香糖苷在花瓣中含量是雄蕊的3.32倍,新叶中含量是老叶的3.77倍;染料木苷在花瓣中含量高于雄蕊,新叶中含量高于老叶。表儿茶素是金花茶中主要儿茶素类成分,花朵中含量远高于叶片,老叶中含量为新叶的5.15倍。

    μg·g-1
    主要化合物 Main compounds 花瓣 Petals 雄蕊 Stamens 老叶 Old leaves 新叶 New leaves
    矢车菊素-3-O-葡萄糖苷 Cyanidin-3-O-glucoside - - 0.01±0.00 11.02±1.22
    天竺葵素-3-O-葡萄糖苷 Pelargonium-3-O-glucoside 15.45±1.23 17.43±0.31 22.59±0.40 25.95±3.71
    槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside 88.05±1.16 91.80±2.34 3.29±0.20 1.38±0.05
    槲皮素-7-O-葡萄糖苷 Quercetin-7-O-glucoside 6.92±0.18 0.97±0.05 - -
    槲皮素-3-O-芸香糖苷 Quercetin-3-O-rutinoside 33.60±0.36 53.51±0.56 1.01±0.06 1.08±0.06
    山柰酚-3-O-葡萄糖苷 Kempferol-3-O-glucoside 16.99±0.41 33.33±1.48 0.08±0.01 0.13±0.01
    木犀草素-7-O-芸香糖苷 Luteolin-7-O-rutinosid 39.04±1.47 11.77±0.42 24.65±1.01 93.04±5.77
    染料木苷 Genistin 2.33±0.08 0.18±0.01 3.58±0.23 7.93±0.42
    儿茶素 Catechin 17.92±0.70 5.64±0.11 0.28±0.06 0.03±0.01
    表儿茶素 Epicatechin 114.38±1.35 165.22±4.10 49.02±1.87 9.52±0.24
      注:“-”表示未鉴定出。
      Note: “-” not identified.

    Table 3.  The contents of the main compounds in the flowers and leaves of C. nitidissima

    金花茶花瓣和雄蕊中表儿茶素含量最高,天竺葵素-3-O-葡萄糖苷含量相对较低;花瓣中类黄酮成分含量较高的依次是槲皮素-3-O-葡萄糖苷、木犀草素-7-O-芸香糖苷和槲皮素-3-O-芸香糖苷,分别占其类黄酮总量的47.10%、20.89%和17.97%,山柰酚-3-O-葡萄糖苷和染料木苷低于10%;雄蕊中类黄酮成分含量较高的依次是槲皮素-3-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷,分别占其类黄酮总量的47.92%、27.93%和17.40%,其余成分均低于10%。老叶中表儿茶素含量最高,天竺葵素-3-O-葡萄糖苷含量相对较高;老叶中类黄酮以木犀草素-7-O-芸香糖苷含量最高,占其类黄酮总量的75.59%,其次为染料木苷和槲皮素-3-O-葡萄糖苷,分别占其类黄酮总量10.98%和10.08%。新叶中矢车菊素-3-O-葡萄糖苷和天竺葵素-3-O-葡萄糖苷含量相对较高,表儿茶素较低;新叶中类黄酮以木犀草素-7-O-芸香糖苷含量最高,占其类黄酮总量的89.84%。

  • 由金花茶花朵和叶片中花青苷、类黄酮与儿茶素成分总量(表 4)看出:花瓣和雄蕊中花青苷类含量相差不大,但分别为老叶中含量的68.36%和77.12%,新叶中含量的41.79%和47.15%;花瓣和雄蕊中类黄酮及儿茶素类含量均相差不大,但远高于叶片中,如花瓣和雄蕊中类黄酮含量分别为老叶的5.73倍和5.87倍,新叶的1.81倍和1.85倍;花瓣和雄蕊中儿茶素类含量分别为老叶的2.68倍和3.47倍,新叶的13.85倍和17.89倍。花瓣和雄蕊中总成分含量相差不大,但分别为老叶中的3.20倍和3.64倍,新叶中的2.23倍和2.53倍。花瓣和雄蕊总成分中花青苷类均最低(低于5%),类黄酮均最高(高于50%)。老叶总成分中儿茶素类、类黄酮和花青苷类分别占47.17%、31.20%和21.63%,新叶中相应分别占6.36%、69.00%和24.64%。

    μg·g-1
    化合物
    Compounds
    花瓣
    Petals
    比例
    Proportion/%
    雄蕊
    Stamens
    比例
    Proportion/%
    老叶
    Old leaves
    比例
    Proportion/%
    新叶
    New leaves
    比例
    Proportion/%
    花青苷类 Anthocyanins 15.45 4.61 17.43 4.59 22.60 21.63 36.97 24.64
    类黄酮 Flavonoids 186.93 55.86 191.56 50.43 32.61 31.20 103.56 69.00
    儿茶素类 Catechins 132.30 39.53 170.86 44.98 49.30 47.17 9.55 6.36
    合计 Total 334.68 100.00 379.85 100.00 104.51 100.00 150.08 100.00

    Table 4.  The total contents of the main compounds in the flowers and leaves of C. nitidissima

3.   讨论
  • 相关研究表明,槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷等是金花茶花瓣中主要类黄酮成分[4, 12]。本试验利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术对金花茶花朵和叶片中的花青苷、类黄酮和儿茶素等成分进行分析,除已鉴定出的化学成分,还首次发现天竺葵素-3-O-葡萄糖苷、矢车菊素-3-O-葡萄糖苷、木犀草素-7-O-芸香糖苷和染料木苷等。本试验定量分析时,利用标准样品建立标准曲线,无标准样品的木犀草素-7-O-芸香糖苷和染料木苷按照槲皮素-3-O-葡萄糖苷标准曲线进行分析,试验重复5次,根据标准曲线计算各成分含量,分析结果表明,各成分含量均在标准曲线的线性范围内,说明本试验建立的金花茶花青苷、类黄酮和儿茶素等定量方法能准确有效定量各成分含量。

    本试验中金花茶花瓣与雄蕊中花青苷含量相差不大,但叶片尤其新叶中花青苷含量远高于花朵;相反,叶片尤其新叶中儿茶素类含量远低于花朵,这可能主要与多酚类物质的合成途径相关,花青素通过花青素还原酶合成儿茶素,因此,金花茶新叶中花青苷含量明显高于老叶,而儿茶素类明显偏低,相关结果与应震等对红叶山茶‘金华美女’的研究一致[13]。金花茶花瓣和雄蕊中总黄酮及主要类黄酮槲皮素-3-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷均相差不大,但远高于叶片。新叶中主要类黄酮成分木犀草素-7-O-芸香糖苷及总类黄酮含量明显高于老叶,可能主要由于新叶为生长活跃区域,次生代谢旺盛,导致花青苷、类黄酮等次生代谢产物增加,具体原因有待于进一步研究。

    已有研究表明,茶树(C. sinensis (L.) O. Ktze.)紫色芽叶品种‘紫娟’中含有矢车菊素类、天竺葵素类和飞燕草素类花青苷[14-15],矢车菊-3-O-葡萄糖苷是红叶山茶品种‘贝拉大玫瑰’及其芽变品种‘金华美女’新叶中主要的花青苷,是导致其新叶显红色的主要原因[13]。本试验中,金花茶绿色老叶中仅含有天竺葵素-3-O-葡萄糖苷,而紫红色新叶中含有天竺葵素-3-O-葡萄糖苷和矢车菊素-3-O-葡萄糖苷,据此推断其新叶紫红色的原因可能与其含有的矢车菊素-3-O-葡萄糖苷有关。矢车菊素类花青苷是红色山茶花瓣中主要的花青苷成分[16-18],而槲皮素-3-O-葡萄糖苷和槲皮素-3-O芸香糖苷等类黄酮是金花茶花朵呈现黄色的主要原因。

    植物中花青苷、类黄酮和儿茶素等具有生物活性,可用于杀菌、消炎、降“三高”和抗肿瘤等[19-21]。金花茶花朵和叶片原料丰富,叶片中的花青苷、类黄酮及儿茶素等生物活性成分具有抑制肿瘤、降“三高”、抗氧化、增强心血管和人体免疫力等生理功效[2-6],具有广泛应用前景,可用于医药、保健及功能性茶饮等。本试验利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术对金花茶花朵和叶片中花青苷、类黄酮及儿茶素等生物活性物质进行研究,明确其花青苷、类黄酮和儿茶素等成分含量及其变化特征,为进一步开发利用提供了科学依据。

4.   结论
  • 本试验利用超高效液相色谱-飞行时间质谱联用(UPLC-QTOF-MS)技术对金花茶花朵和叶片中的花青苷、类黄酮和儿茶素等成分进行分析,共鉴定出2种花青苷、6种类黄酮和2种儿茶素类。首次在金花茶中检测到天竺葵素-3-O-葡萄糖苷和矢车菊素-3-O-葡萄糖苷,其中,矢车菊素-3-O-葡萄糖苷仅存在于金花茶紫红色新叶中。金花茶6种类黄酮成分中木犀草素-7-O-芸香糖苷和染料木苷为首次发现;槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷为金花茶叶片中首次发现。金花茶中检测到儿茶素和表儿茶素,且以表儿茶素为主。槲皮素-3-O-葡萄糖苷等类黄酮是金花茶花朵呈现黄色的主要原因,而矢车菊素-3-O-葡萄糖苷是其新叶呈现紫红色的主要原因。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return