• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 32 Issue 1
Jul.  2019
Article Contents
Turn off MathJax

Citation:

Variation and Selection of Growth and Fruit Traits among 170 Pinus koraiensis Clones

  • Corresponding author: ZHAO Xi-yang, zhaoxyphd@163.com
  • Received Date: 2017-12-05
    Accepted Date: 2018-11-17
  • Objective To select and establish nut and timber multipurpose Pinus koraiensis forest with high yield and excellent quality. Method 170 P. koraiensis clones at 38 years old in the Naozhi Forest Farm in Linjiang Forestry Bureau, Jilin Province were taken as materials, the tree height, diameter at breast height, single volume, number of cone, seed weight of single cone, seed weight of single plant, thousand-seed weight, fresh cone weight and germination rate of different clones were investigated. Result Variance analysis showed that:All the traits were significantly different (P < 0.01) among different clones except germination rate (P=0.280). The coefficients of phenotypic variation of different traits ranged from 3.57%~66.09%. Except the germination rate (R=0.07), the repeatability of all traits was higher than 0.45. There existed significantly positive correlations between tree height, diameter at breast height and single volume (0.680~0.975). Except germination rate, there existed significant positive correlation with among the seed traits (0.411~0.996). Combined the growth and fruit traits, the diameter at breast height and single volume showed a significant positive correlation with the number of cone, seed weight of single cone and seed weight of single plant. By using the method of multiple-traits evaluation, 17 clones were selected as elite trees under 10% selected rate based on growth (the genetic gain ranged from 32.20% to 79.42%) and fruit traits (the genetic gain ranged from 2.19% to 142.99%), respectively. Combined the growth and fruit traits, 17 clones were selected as elite clones with multiple-traits evaluation method, the genetic gain of different traits ranged from 2.23% to 137.44%. Conclusion Based on the aforementioned results, using growth traits, fruiting traits and combined the growth and fruiting traits, 17 clones suitable for different breeding objectives are selected. One clone is selected as the elite clone which performs better in growth traits and fruit traits.
  • 加载中
  • [1] 隋心.红松无性系种子园子代的父本分析及遗传多样性的研究[D].哈尔滨: 东北林业大学, 2009.

    [2] 马建路, 庄丽文, 陈动, 等.红松的地理分布[J].东北林业大学学报, 1992, 20(5):40-48.

    [3] 郑景明, 姜凤岐, 曾德慧.长白山阔叶红松林生态价位分级与生态系统经营对策[J].应用生态学报, 2003, 14(6):839-844. doi: 10.3321/j.issn:1001-9332.2003.06.001

    [4]

    Shao G F, Schall P, Weishampel J F. Dynamic simulations of mixed broadleaved-Pinus koraiensis forests in the Changbaishan biosphere reserve of China[J]. Forest Ecology and Management, 1994, 70(1-3):169-181. doi: 10.1016/0378-1127(94)90084-1
    [5]

    Liang D Y, Ding C J, Zhao G H, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. Journal of Forestry Research, 2017(1):1-12.
    [6]

    Wilrike J P, Jos H, Carina M R, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women[J]. Lipids in Health and Disease, 2008, 7(1):1-10. doi: 10.1186/1476-511X-7-1
    [7] 王卫, 史绍林, 刘洋.人工红松生殖生长研究现状与展望[J].防护林科技, 2015(3):96-98.

    [8] 孙文生.红松种子园优质高产经营技术研究[D].北京: 北京林业大学, 2006.

    [9]

    Wang H M, Xia D A, Wang W J, et al. Genetic variations of wood properties and growth characters of Korean pines from different provenance[J]. Journal of Forest Research, 2002, 13(40):277-280.
    [10] 张兴, 李桐森, 段安安.国内松树扦插技术研究进展及对策[J].西南林学院学报, 2004, 24(1):66-69, 80.

    [11] 刘宏伟, 孙美欧, 王国义.红松二代无性系种子园建立技术的研究[J].林业科技, 2015, 40(6):13-15.

    [12]

    Zu Y G, Wei X X, Yu J H, et al. Responses in the physiology and biochemistry of Korean pine (Pinus koraiensis) under supplementary UV-B radiation[J]. Photosynthetica, 2011, 49(3):448-458. doi: 10.1007/s11099-011-0057-4
    [13] 王振宇, 杨立宾, 魏殿文.红松松仁中天然产物的研究进展[J].国土与自然资源研究, 2008(2):90-91. doi: 10.3969/j.issn.1003-7853.2008.02.045

    [14]

    Azad M A K, Wang F, Kim H R. Identification of a novel sugar compound from Korean pine seeds[J]. Food Science & Biotechnology, 2015, 24(06):2011-2015.
    [15] 冯富娟, 张冬东, 韩士杰.红松种子园优良无性系的遗传多样性[J].东北林业大学学报, 2007, 35(9):9-11. doi: 10.3969/j.issn.1000-5382.2007.09.004

    [16] 张振, 张含国, 张磊.红松自由授粉子代家系生产力年度变异与家系选择[J].植物研究, 2016, 36(2):305-309.

    [17] 续九如.林木数量遗传学[M].北京:中国林业出版社, 2006:31, 55.

    [18] 解孝满, 李景涛, 赵合娥.柳树无性系苗期遗传测定与选择[J].江苏林业科技, 2008, 35 (3):6-14. doi: 10.3969/j.issn.1001-7380.2008.03.002

    [19] 朱之悌.林木遗传学基础[M].北京:中国林业出版社, 1989:190-191.

    [20]

    Mwasie W F, Savill P S, Hemery G E. Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seeding orchard at little witten ham in England[J]. New Forests, 2008, 36(03):225-238. doi: 10.1007/s11056-008-9095-6
    [21] 杨继.植物种内形态变异的机制及其研究方法[J].武汉植物学研究, 1991, 9(2):185-195.

    [22] 张恒庆, 安利佳, 祖元刚.天然红松种群形态特征地理变异的研究[J].生态学报, 1999, 19(6):932-938. doi: 10.3321/j.issn:1000-0933.1999.06.029

    [23] 梁德洋, 金允哲, 赵光浩, 等. 50个红松无性系生长与木材性状变异研究[J].北京林业大学学报, 2016, 38(6):51-59.

    [24] 张海廷, 张骅, 王金国, 等.红松坚果型无性系选择[J].林业科技, 2003, 28(1):4-9.

    [25] 张振.红松无性系种子形态及营养成分变异研究[D].哈尔滨: 东北林业大学, 2015.

    [26] 吴裕, 毛常丽.树木育种学中遗传力、重复力和遗传增益的概念及思考[J].热带农业科技, 2012, 35(1):47-50. doi: 10.3969/j.issn.1672-450X.2012.01.015

    [27] 那冬晨.红松坚果型优良无性系选择的研究[D].哈尔滨: 东北林业大学, 2002.

    [28] 张树君, 王有传, 孔凤芹, 等.红松坚果园优良无性系结实量分析[J].林业勘查设计, 1999(1):40.

    [29] 赵建明, 张海廷, 丁旭章.红松人工林坚果型优树标准的研究[J].林业科技, 1997, 22(4):9-11.

    [30]

    Sumida A, Miyaura T, Hitoshi T. Relationships of tree height and diameter at breast height revisited:analyses of stem growth using 20-year data of an even-aged chamaecyparis obtusa stand[J]. Tree Physiology, 2013, 33(1):106-118. doi: 10.1093/treephys/tps127
    [31]

    Fukatsu E, Hiraoka Y, Matsunaga K, et al. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test[J]. Journal of Wood Science, 2015, 61(1):10-18. doi: 10.1007/s10086-014-1436-9
    [32]

    Goncalves P, Bortoletto N, Cardinal A, et al. Age-age correlation for early selection of rubber tree genotypes in sao paulo state, Brazil[J]. Genetics and Molecular Biology, 2005, 28(4):758-764. doi: 10.1590/S1415-47572005000500018
    [33]

    Zhao X Y, Hou W, Zheng H Q, et al. Analyses of genotypic variation in white poplar clones at four sites in China[J]. Silvae Genetica, 2013, 62(4):187-195.
    [34] 王行轩, 张利民, 庞志慧.红松结实性状的选择效果[J].东北林业大学学报, 2001, 29(3):31-36. doi: 10.3969/j.issn.1000-5382.2001.03.008

    [35] 齐立志, 刘吉雨, 刘桂丰, 等.长白落叶松雌雄花及球果, 种子性状的变异[J].东北林业大学学报, 1995, 23(2):7-13.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article views(3738) PDF downloads(145) Cited by()

Proportional views

Variation and Selection of Growth and Fruit Traits among 170 Pinus koraiensis Clones

    Corresponding author: ZHAO Xi-yang, zhaoxyphd@163.com
  • 1. State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China
  • 2. Linjiang Forestry Bureau of Jilin Provenance, Linjiang 134600, Jilin, China

Abstract:  Objective To select and establish nut and timber multipurpose Pinus koraiensis forest with high yield and excellent quality. Method 170 P. koraiensis clones at 38 years old in the Naozhi Forest Farm in Linjiang Forestry Bureau, Jilin Province were taken as materials, the tree height, diameter at breast height, single volume, number of cone, seed weight of single cone, seed weight of single plant, thousand-seed weight, fresh cone weight and germination rate of different clones were investigated. Result Variance analysis showed that:All the traits were significantly different (P < 0.01) among different clones except germination rate (P=0.280). The coefficients of phenotypic variation of different traits ranged from 3.57%~66.09%. Except the germination rate (R=0.07), the repeatability of all traits was higher than 0.45. There existed significantly positive correlations between tree height, diameter at breast height and single volume (0.680~0.975). Except germination rate, there existed significant positive correlation with among the seed traits (0.411~0.996). Combined the growth and fruit traits, the diameter at breast height and single volume showed a significant positive correlation with the number of cone, seed weight of single cone and seed weight of single plant. By using the method of multiple-traits evaluation, 17 clones were selected as elite trees under 10% selected rate based on growth (the genetic gain ranged from 32.20% to 79.42%) and fruit traits (the genetic gain ranged from 2.19% to 142.99%), respectively. Combined the growth and fruit traits, 17 clones were selected as elite clones with multiple-traits evaluation method, the genetic gain of different traits ranged from 2.23% to 137.44%. Conclusion Based on the aforementioned results, using growth traits, fruiting traits and combined the growth and fruiting traits, 17 clones suitable for different breeding objectives are selected. One clone is selected as the elite clone which performs better in growth traits and fruit traits.

  • 红松(Pinus koraiensis)为松科(Pinaceae)松属(Pinus)乔木,主要分布于中国东北部、俄罗斯远东南部、朝鲜半岛及日本岛的四国和本州[1]。在我国,红松主要分布于长白山及其北部的张广才岭、老爷岭、完达山和小兴安岭[2],是东北地区重要的生态防护树种[3-4]。此外,红松树干通直,材质优良,果实具有较高的食用[5]和药用价值[6],是珍贵的用材及经济树种[7]。我国红松育种工作开始于20世纪80年代,主要以我国红松天然林为选择群体,选择种源及优树营建20多个红松无性系种子园[8]。基于此材料,红松的科学研究逐渐开展,主要集中在种源及无性系评价选择[9]、无性繁殖[10]、种子园营建及改建[11]、生理生态[12]及种子营养成分[13-14]及种群遗传结构[15]等研究。

    迄今为止,我国营建的第一批无性系种子园均已开花结实,然而,这些种子园大部分均处于初级种子园阶段,建园所用的亲本材料一般只经过生长性状选优而较少考虑开花及结实性状。由于近年来松子的开发及利用,红松价值在市场指导作用中已经逐步向材果兼用转变,高产、稳产红松优良无性系评价选择越来越重要。虽然学者们基于红松种子园及天然林材料对红松生长、木材或结实量均有研究,但系统对红松生长及结实性状联合研究较少。本研究以吉林省临江林业局闹枝林场国家红松良种基地的38年生170个红松无性系为材料,对其生长、结实及种子性状进行测定分析,利用多性状对各无性系进行综合评价及初步选择,为优良红松无性系评价提供理论基础。

1.   试验材料和方法
  • 试验林位于临江林业局闹枝国家红松良种基地,位于吉林省临江市(47°37′ N,126°54′ E),海拔450 m。年平均气温5℃,无霜期135 d,年降水量7501 000 mm,年蒸发量927.9 mm。

    试验材料包括的170个红松无性系选优于辽宁本溪林业局草河口林场的红松天然林、吉林省露水河林业局红松天然林及临江林业局闹枝林场,利用先定砧后嫁接的方式于1978年建成无性系种子园。生产区规划面积为45 hm2,种子园设计采用完全随机设计,共计7个区组,每个区组内包括10个小区,小区面积为0.612 hm2,每个小区内170个无性系随机排列,一个小区中每个无性系栽植1株,无性系株行距为6 m×6 m。

  • 于2015年对15区组内的170个红松无性系的生长和结实性状进行调查。利用Vertex Laser测高仪及围尺测定单株树高和胸径,剔除特异值后进行变异参数分析。对各分株进行松树球果数量测量。每个无性系随机选择10个分株,每个分株取5个球果测定单个球果鲜质量及每个球果内含有的松子数量即单塔出籽量。每个无性系随机选择1 000粒种子,分成10份,利用天平测定每100粒种子的质量作为百粒质量,对获得数据乘以10作为无性系千粒质量。对测定千粒质量后的种子进行分组沙藏,制种后播种到盆中,测定不同无性系的发芽率,发芽率在方差计算过程中进行反正弦数据转换。

  • 所有数据利用SPSS 19.0软件进行分析。单株材积(V)按实验形数法[16]计算:V=(H+3)g1.3f (式中:H为红松树高,红松立木平均实验形数f为0.33,g1.3为胸高处横断面积);无性系重复力(R)采用续九如[17]的方法进行估算:R=1-1/F (式中:F为方差分析的F值);表型变异系数(PCV)采用公式[18]:PCV = S/X × 100%(式中:S为表型标准差, X为某一性状群体平均值)。表型相关系数(r)采用公式[18]:${r_{p12}} = \frac{{{{{\mathop{ Cov}} }_{p12}}}}{{\sqrt {\sigma _{p1}^2 \cdot \sigma _{p2}^2} }}$(式中:Covp12为2个性状的表型协方差,σ2p1σ2p2分别为2性状的表型方差);采用布雷金多性状综合评定法对无性系进行综合评定[18]:${Q_i} = \sqrt {\sum\limits_{j = 1}^n {{a_i}, } } $,ai=Xij/Xjmax,(式中:Qi为综合评价值, Xij为某一性状的平均值,Xjmax为某一性状的最优值,n为评价指标的个数);遗传增益(△G)估算采用公式[19]:△G=RW/X,(式中:W为选择差,R为性状的重复力,X为某一性状的平均值)。

2.   结果分析
  • 对2015年170个红松无性系的生长和结实性状进行方差分析,结果(表 1)表明:38年生时的红松无性系树高、胸径、单株材积、单株球果数、单塔出籽量、单株出籽量、球果鲜质量和千粒质量各性状差异均达极显著水平(P < 0.01),发芽率在各无性系间的差异不显著(P=0.280)。方差分析结果说明不同无性系间存在真实的生长和结实性状遗传差异。

    性状Traitsdf均方Mean square (MS)FSig
    树高Tree height1693.662.720.000
    胸径Diameter at breast height169154.2410.1370.000
    单株材积Single volume1690.0749.9720.000
    单株球果数Number of cone1691 266.1410.680.000
    单塔出籽量Seed weight of single cone16983.432.700.000
    单株出籽量Seed weight of single plant1697 437 05813.8990.000
    千粒质量Thousands seed weight1692 303.451.870.000
    球果鲜质量Fresh cone weight1693 397.171.820.000
    发芽率Germination rate16911.881.070.280

    Table 1.  Variance analysis of different traits among 170 clones

  • 170个红松无性系各指标遗传变异参数分析结果(表 2)表明:无性系树高的平均值为11.08 m,变幅为7.0114.60 m,最大值是最小值的2.08倍;胸径的平均值为28 cm,最大值(44.50 cm)是最小值(12.00)的3.70倍;单株材积平均值为0.302 m3,变幅为0.0440.841 m3;单株球果数的平均值为28.31个,不同无性系间变化较大,最大值为最小值的12倍;单塔出籽量的平均值为63.06 g,变幅为52.2081.80 g;单株出籽量的平均值为1 815.33 g,变幅为493.208 351.2 g;球果鲜质量的平均值为344.04 g,变幅为263.70464.80 g;千粒质量的平均值为728.16 g,变幅为662.20834.00 g;发芽率的平均值为93.91%,但无性系间差异较小,变幅为88.10%99.80%;各指标表型变异系数的变化范围为3.57%(发芽率)66.09%(单株出籽量)。除发芽率外,各指标的重复力均较高(R>0.45),胸径、单株材积和单株球果数的重复力最高,均达0.90。

    性状
    Traits
    平均值
    Average
    变幅
    Range
    变异系数
    Coefficient of variation
    重复力
    Repeatability
    树高/m Tree height11.087.0114.6011.720.63
    胸径/cm Diameter of breast height28.0012.0044.5021.390.90
    单株材积/m3 Single volume0.3020.0440.84143.410.90
    单株球果数/个Number of cone28.319.00108.0057.930.91
    单塔出籽量/g Seed weight of single cone63.0652.2081.809.750.63
    单株出籽量/g Seed weight of single tree1 815.33493.208 351.2066.090.93
    千粒质量/g Thousands seed weight728.16662.20834.005.090.47
    球果鲜质量/g Fresh cone weight344.04263.70464.8013.230.45
    发芽率/% Germination rate93.9188.1099.803.570.07

    Table 2.  Variation parameters and average of different traits in 170 P.koraiensis clones

  • 红松无性系各指标间的相关系数见表 3。从生长指标看,树高、胸径和单株材积3个指标间达极显著正相关(0.680 < r < 0.975);从种实性状看,单株球果数、单塔出籽量、单株出籽量、球果鲜质量和千粒质量之间均达极显著正相关(0.411 < r < 0.996),而发芽率与其它种实性状间相关均不显著(-0.123 < r < 0.038)。结合生长和结实性状看,胸径和单株材积与单株球果数、单塔出籽量及单株出籽量间均达到极显著正相关(0.201 < r < 0.227),胸径与球果鲜质量(r=0.195)及千粒质量(r=0.158)、单株材积与球果鲜质量(r=0.192)呈显著正相关,树高与球果鲜质量(r=0.162)、千粒质量(r=0.158)、单塔出籽量(r=0.158)的相关系数也达到显著水平,说明生长和种实间大部分性状相关性达到显著水平,生长量越大的红松其种子产量越高,这为选择生长量大、结实量高的红松优良遗传型提供了可能。

    树高
    Tree
    height
    胸径
    Diameter
    at breast
    height
    单株材积
    Single
    volume
    单株球果数
    Number
    of cone
    单塔出籽量
    Seed weight
    of single
    cone
    单株出籽量
    Seed weight
    of single
    tree
    千粒质量
    Thousands
    seed
    weight
    球果鲜质量
    Fresh cone
    weight
    发芽率
    Germination
    rate
    树高Tree height1
    胸径Diameter at breast height0.680**1
    单株材积Single volume0.743**0.975**1
    单株球果数Number of cone0.1270.215**0.201**1
    单塔出籽量Seed weight of single cone0.158*0.227**0.208**0.726**1
    单株出籽量Seed weight of single tree0.1280.220**0.205**0.996**0.774**1
    千粒质量Thousands seed weight0.158*0.158*0.1490.647**0.548**0.652**1
    球果鲜质量Fresh cone weight0.162*0.195*0.192*0.584**0.419**0.588**0.411**1
    发芽率Germination rate-0.123-0.096-0.089-0.0130.003-0.0090.038-0.0761
    注:*表示相关达显著水平(P<0.05),**相关达极显著水平(P<0.01)。
    Notes: *Represents correlation is significant at the 0.05 level, ** represents correlation is significant at the 0.01 level.

    Table 3.  Correlation coefficients among different traits in 170 P.koraiensis clones

  • 利用胸径和单株材积为评价指标对各无性系进行综合评价,Qi值见表 4。以10%的入选率对无性系进行选择,无性系110、610、710、34、14、31、210、74、114、138、37、119、39、127、118、69和314共17个入选,入选的17个无性系单株材积平均值为0.569 m3,较总体平均值高88.41%,遗传增益为79.42%,胸径平均值为37.02 cm,较总体平均值高32.14%,遗传增益为28.98%。

    无性系
    Clone
    Qi单株材积
    Single
    volume/m3
    胸径
    Diameter at
    breast height/cm
    1101.410.67940.25
    6101.390.64239.23
    7101.360.61638.30
    341.350.59738.37
    141.330.56137.65
    311.320.57036.87
    2101.320.56336.98
    741.320.56436.77
    1141.320.55936.88
    1381.310.55936.38
    371.310.54836.43
    1191.310.55535.83
    391.300.53436.63
    1271.300.54035.63
    1181.300.52736.37
    691.300.53335.93
    3141.270.51634.76
    优良无性系均值Excellent clones mean-0.56937.02
    群体均值Population mean-0.30228.00
    遗传增益Genetic gain%-79.4228.98

    Table 4.  Qi values of 170 P. koraiensis clones based on growth traits by comprehensive evaluation methods

  • 以结实性状(千粒质量和单株出籽量)为标准,对各无性系进行综合评价,结果见表 5。以10%的入选率对无性系进行选择,84、83、138、1110、85、82、88、123、820、126、137、81、86、810、510、1210和210共17个无性系入选,入选无性系千粒质量平均值为762.09 g,较总平均值高4.67%,遗传增益为2.19%,单株出籽量平均值为4 606.45 g,较总体平均值高153.75%,遗传增益为142.99%。


    无性系
    Clone
    Qi千粒质量
    Thousands seed
    weight/g
    单株出籽量
    Seed weight of
    single tree/g
    841.41782.496 230.49
    831.39768.836 023.52
    1381.39783.715 847.76
    11101.37759.205 685.11
    851.36796.445 361.96
    821.35784.025 237.74
    881.33762.305 094.75
    1231.33750.535 170.96
    8201.33759.005 084.64
    1261.32768.484 836.23
    1371.32771.624 767.75
    811.30746.074 705.50
    861.28759.404 208.00
    8101.23731.573 685.70
    5101.15757.402 249.73
    12101.12746.692 036.90
    2101.12727.812 082.96
    优良无性系均值Excellent clones mean-762.094 606.45
    群体均值Population mean-728.061 815.33
    遗传增益Genetic gain%-2.19142.99

    Table 5.  Qi values of 170 P. koraiensis clones based on fruit traits by comprehensive evaluation methods

  • 以生长和结实性状(单株材积、单株出籽量和千粒质量)为标准,对各无性系进行综合评价,Qi值见表 6。以10%的入选率对无性系进行选择,14、84、83、138、85、82、1110、88、123、126、820、137、81、86、11、12和810共17个无性系入选。入选无性系在单株材积、单株出籽量和千粒质量的遗传增益分别为25.21%、137.44%和2.23%。无性系138在3种评价方法中均入选,表明这个无性系生长及结实性状均较优良,可作为材果兼用优良无性系来应用。

    无性系
    Clone
    Qi单株材积
    Single
    volume/m3
    单株出籽量
    Seed weight of
    single tree/g
    千粒质量
    Thousands
    seed weight/g
    141.430.5611 770.49744.26
    841.400.4346 230.49782.49
    831.390.3546 023.52768.83
    1381.370.5595 847.76783.71
    851.360.4325 361.96796.44
    821.350.3515 237.74784.02
    11101.340.3285 685.11759.20
    881.330.3405 094.75762.30
    1231.320.3905 170.96750.53
    1261.310.3984 836.23768.48
    8201.310.3665 084.64759.00
    1371.300.3694 767.75771.62
    811.300.4074 705.50746.07
    861.270.3824 208.00759.40
    111.240.2901 230.89726.11
    121.230.2281 526.57737.58
    8101.210.3843 685.70731.57
    优良无性系均值
    Excellent clones mean
    -0.3874 498.120760.68
    群体均值
    Population mean
    -0.3021 815.33728.16
    遗传增益
    Genetic gain%
    -25.21137.442.23

    Table 6.  Qi values of 170 P. koraiensis clones based on growth and fruit traits by comprehensive evaluation methods

3.   讨论
  • 遗传和变异是林木育种研究的主要内容,是林木遗传改良的基础[20]。物种的个体、群体之间都存在着不同程度的形态变异[21],张恒庆等对天然红松的遗传变异研究结果表明,大部分变异来自群体内的个体间[22]。对红松不同个体间的遗传变异进行研究可以在丰富的红松育种资源中选择出优良的生产材料推广应用。本研究中,除种子发芽率外,170个红松无性系间各生长和结实性状差异均达极显著水平(P < 0.01),表明不同无性系间各指标差异较大,对不同无性系各性状评价选择具有重要意义,其中,树高、胸径和单株材积的表型变异系数分别为11.72%、21.39%和43.41%,比梁德洋等[23]对37年生50个红松无性系的研究结果稍高,这可能与样本量的大小有关。单株球果数的表型变异系数为57.93%,与张海廷等[24]的研究结果相似,但球果鲜质量与千粒质量表型变异系数较其研究结果稍低。单株出籽量变异系数为66.09%,这与张振[25]对红松的研究结果高1.5倍左右,这可能与材料不同有直接关系,也更说明不同种源间,乃至个体间表型差异较大,在此群体内进行材用和果用材料选择,在很大程度上会产生较高增益。

    重复力是衡量性状稳定程度的指标,重复力越高意味着性状越稳定,受外界环境作用影响越小,对重复力高的性状进行表型选择,其产生的效果越好[26]。本研究中,除种子发芽率外,各性状的重复力均大于0.45,表明在无性利用过程中,各指标可以稳定表现,尤其胸径、单株材积、单株球果数和单株出籽量的重复力均达到0.90,比那冬晨[27]的研究结果高,表明此研究中评价结果更稳定,高变异、高重复力有利于红松优良无性系的评价选择。

    38年生红松无性系的树高、胸径和单株材积平均值分别为11.08 m、28.00 cm和0.302 m3,此结果较梁德洋[23]等对红松研究结果稍高,可能与种源、区域环境等诸多因素有关。从结实性状看,单株球果数平均值为28.31个,这与张树君等[28]的研究结果相近。球果鲜质量和千粒质量平均值分别为344.04、728.16 g较赵建明[29]等的研究结果稍高。从数量遗传学选择理论看,表型选择比较适合于重复力高的性状,基于本研究中各指标的高重复力,再一次表明对这批无性系评价选择会有较优效果。

    相关系数代表不同性状之间的关联程度,对了解不同测定指标之间的关系具有重要作用[30-31]。本研究中,树高、胸径和单株材积间具有极显著正相关,这与梁德洋[23]等的研究结果相似,树高和胸径这2个生长指标相互影响,这在他人研究结果中也有体现[32-33]。单株球果数、球果鲜质量、千粒质量、单株出籽量和单塔出籽量之间呈极显著正相关,其中,单株球果数和单株出籽量的研究结果与那冬晨[27]的研究结果相同,而关于红松结实量和种子质量的相关关系与王行轩[34]等的研究结果相反,研究表明结实性状的各指标存在一定关系。发芽率与其它种实性状间的相关均不显著,表明红松种子发芽与单株生长发育、球果发育等性状关系较弱,此研究与齐立志等[35]对长白落叶松的研究结果不同,这可能与发芽条件、林分密度、采种时间、脱粒时间和树种不同等有关;而生长性状与部分结实性状相关达显著水平,这应与树体吸收营养再分配过程中生长与生殖竞争有关,其中,胸径和单株材积与单株球果数、单塔出籽量和单株出籽量呈极显著正相关,这为选择生长量大和种子产量高的红松无性系提供了理论依据。

4.   结论
  • 育种目标决定育种方法,红松作为优良的用材树种,对无性系评价应该以生长性状选育为主,当作为坚果树种选育时应重点考虑结实性状。近年来,红松逐步向坚果与用材林兼用的方向发展,根据育种目标在现有无性系中进行再选择,可以最大化利用现有资源。本研究分别利用生长性状、结实性状及生长与结实相结合对无性系进行评价,各筛选出17个优良无性系,入选无性系在生长与结实性状均显示较高遗传增益,尤其无性系138在不同的评价方法中均表现较高的Qi值,表明该无性系生长及结实均较优秀,可以作为优良无性系重点考虑。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return