• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 32 Issue 4
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Tolerance of Liquidambar formosana Seedlings to Pb: Physiological and Biochemical Response and Elements Distribution

  • Corresponding author: SUN Hai-jing, sunhaijing@163.com
  • Received Date: 2018-08-26
    Accepted Date: 2018-10-26
  • Objective A greenhouse pot experiment was conducted to determine the characteristics of Pb micro-distribution and chemical forms in Liquidambar formosana seedlings and evaluate the implication on Pb toxicity and the plant tolerance. Method The response of seedlings to Pb concentrations (0, 50, 100, 200 and 400 mg·L-1) in the solution was studied. the seedling growth, chlorophyll, carotenoid, Pb accumulation and translocation were assessed. Different chemical reagent extraction techniques were carried out to analyze the chemical forms of Pb. The characteristics of Pb distribution in root of L. formosana were investigated by synchrotron radiation X-ray fluorescence analysis. Result The results showed that Pb concentration treatments induced toxicity symptoms in seedlings' leaves. Compared to the control, the biomass increased slightly at low concentration (50 mg·L-1), and the tolerance index values of all Pb treatments were great than 0.9. Under Pb stress conditions, the photosynthetic pigments significantly declined. During the experiment, a greater quantity of Pb was uptake and mostly retained in L. formosana roots, and the translocation factor values of all Pb treatments were lower than 0.1. Most of Pb in L. formosana tissues was stored in the cell wall with HAc-, HCl-, and NaCl-extractable form. The synchrotron radiation X-ray fluorescence analysis indicated that most of Pb was detected in the epidermal cells of roots. Conclusion Our results suggested that Pb deposited in the epidermal cells of roots and integration with phosphate or oxalate might be responsible for the tolerance of L. formosana under Pb stress in short period.
  • 加载中
  • [1]

    Pourrut B, Shahid M, Dumat C, et al. Lead uptake, toxicity, and detoxification in plants[J]. Reviews of Environmental Contamination and Toxicology, 2011, 213: 113-136.
    [2]

    Zheng L J, Liu X M, Lutz-Meindl U, et al. Effects of lead and EDTA-assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinensis and Lespedeza davidii[J]. Water Air and Soil Pollution, 2011, 220(1): 57-68.
    [3]

    Kumar G H, Kumari J P. Heavy metal lead influative toxicity and its assessment in phytoremediating plants-A review[J]. Water Air and Soil Pollution, 2015, 226(10): 324. doi: 10.1007/s11270-015-2547-7
    [4]

    Tripathi D K, Singh V P, Prasad S M, et al. LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 154: 89-98. doi: 10.1016/j.jphotobiol.2015.11.008
    [5]

    Zaier H, Ghnaya T, Lakhdar A, et al. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation[J]. Journal of Hazardous Materials, 2010, 183(1): 609-615.
    [6]

    Solãs-Dominguez F A, White S A, Hutter T B, et al. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species[J]. Environmental Science and Technology, 2012, 46(2): 1019-1027. doi: 10.1021/es202846n
    [7]

    Mendez M O, Maier R M. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology[J]. Environmental Health Perspectives, 2008, 116(3): 278-283. doi: 10.1289/ehp.10608
    [8]

    Shukla O P, Juwarkar A A, Singh S K, et al. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge[J]. Waste Management, 2011, 31(1): 115-123.
    [9]

    Konlechner C, Turktas M, Langer I, et al. Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics[J]. Environmental Pollution, 2013, 178: 121-127. doi: 10.1016/j.envpol.2013.02.033
    [10]

    Zhou L Y, Zhao Y, Wang S F, et al. Lead in the soil-mulberry (Morus alba L.)- silkworm (Bombyx mori) food chain: translocation and detoxification[J]. Chemosphere, 2015, 128: 171-177. doi: 10.1016/j.chemosphere.2015.01.031
    [11]

    Vollenweider P, Menard T, Gunthardt-Goerg M S. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. Ⅰ. From the tree crown to leaf cell level[J]. Environmental Pollution, 2011, 159(1): 324-336. doi: 10.1016/j.envpol.2010.07.013
    [12]

    Luo Z B, He J L, Polle A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34(6): 1131-1148. doi: 10.1016/j.biotechadv.2016.07.003
    [13]

    Marmiroli M, Pietrini F, Maestri E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319-1334. doi: 10.1093/treephys/tpr090
    [14] 章芹, 薛建辉, 刘成刚. Cd2+与CTAB复合污染对枫香幼苗生长与生理生化特征的影响[J].生态学报, 2011, 31 (19): 5824-5831.

    [15] 陈顺钰, 韩航, 薛凌云, 等. Pb、Cd和酸胁迫对枫香种子萌发、幼苗生长及体内抗氧化酶活性的影响[J].农业环境科学学报, 2018, 37 (4): 647-655.

    [16] 吉启轩, 薛建辉, 沈雪梅.不同年龄枫香对土壤中重金属污染物吸收能力比较[J].山东林业科技, 2013, 43 (1): 1-7. doi: 10.3969/j.issn.1002-2724.2013.01.001

    [17] 王德娜, 薛建辉.施用IBA对枫香幼苗吸收土壤Cd2+的影响[J].南京林业大学学报:自然科学版, 2012, 36 (2): 121-124.

    [18]

    Zhou C F, Huang M Y, Li Y, et al. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana[J]. Environmental Science and Pollution Research, 2016, 23(21): 21794-21804. doi: 10.1007/s11356-016-7362-1
    [19]

    Wang S F, Shi X, Sun H J, et al. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead[J]. PLoS One, 2014, 9(9): e108568. doi: 10.1371/journal.pone.0108568
    [20] 王树凤, 施翔, 田生科, 等.杞柳不同品种对铅的积累、耐性及叶片元素原位微区分布特征[J].林业科学, 2016, 52 (5): 71-80.

    [21]

    Zhou S, Kai H L, Zha Z Y, et al. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa[J]. Journal of Environmental Radioactivity, 2016, 157: 60-66. doi: 10.1016/j.jenvrad.2016.03.003
    [22]

    Fahr M, Laplaze L, Bendaou N, et al. Effect of lead on root growth[J]. Frontiers in Plant Science, 2013, 4(1): 1-7.
    [23]

    Islam E, Liu D, Li T, et al. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. Journal of Hazardous Materials, 2008, 154(1-3): 914-926. doi: 10.1016/j.jhazmat.2007.10.121
    [24]

    Huang H, Gupta D K, Tian S K, et al. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii[J]. Environmental Science and Pollution Research, 2012, 19(5): 1640-1651. doi: 10.1007/s11356-011-0675-1
    [25]

    Kumar A, Prasad M, Sytar O. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically[J]. Chemosphere, 2012, 89(9): 1056-1065. doi: 10.1016/j.chemosphere.2012.05.070
    [26]

    Zhou C F, Huang M Y, Ren H J, et al. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings[J]. Ecotoxicology and Environmental Safety, 2017, 142: 59-68. doi: 10.1016/j.ecoenv.2017.03.052
    [27]

    Malar S, Manikandan R, Favas P J C, et al. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2014, 108(10): 249-257.
    [28]

    Kopittke P M, Asher C J, Blamey F P C, et al. Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and rhodes grass (Chloris gayana)[J]. Environmental Science and Technology, 2008, 42(12): 4595-4599. doi: 10.1021/es702627c
    [29] 杨素勤, 程海宽, 景鑫鑫, 等.不同铅吸收特性小麦Pb的亚细胞分布和化学提取态[J].中国农业科学, 2015, 48 (14): 2848-2856. doi: 10.3864/j.issn.0578-1752.2015.14.016

    [30] 徐劼.茶树(Camellia sinensis L.)对铅的吸收累积及耐性机制研究[D].杭州: 浙江大学, 2011: 75-104.

    [31]

    Colleen M H, Mattllew J L F, Seott F, et al. Spatial and temporal association of As and Fe species on aquatic plant roots[J]. Environmental Science and Technology, 2002, 36(9): 1988-1994. doi: 10.1021/es015647d
    [32] 李隼, 黄胜东, 赵福庚.重金属镉对水稻根毛细胞钾离子吸收过程的影响[J].植物生理学报, 2011, 47(5): 481-487.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(4283) PDF downloads(39) Cited by()

Proportional views

Tolerance of Liquidambar formosana Seedlings to Pb: Physiological and Biochemical Response and Elements Distribution

    Corresponding author: SUN Hai-jing, sunhaijing@163.com
  • Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Hangzhou 311400, Zhejiang, China

Abstract:  Objective A greenhouse pot experiment was conducted to determine the characteristics of Pb micro-distribution and chemical forms in Liquidambar formosana seedlings and evaluate the implication on Pb toxicity and the plant tolerance. Method The response of seedlings to Pb concentrations (0, 50, 100, 200 and 400 mg·L-1) in the solution was studied. the seedling growth, chlorophyll, carotenoid, Pb accumulation and translocation were assessed. Different chemical reagent extraction techniques were carried out to analyze the chemical forms of Pb. The characteristics of Pb distribution in root of L. formosana were investigated by synchrotron radiation X-ray fluorescence analysis. Result The results showed that Pb concentration treatments induced toxicity symptoms in seedlings' leaves. Compared to the control, the biomass increased slightly at low concentration (50 mg·L-1), and the tolerance index values of all Pb treatments were great than 0.9. Under Pb stress conditions, the photosynthetic pigments significantly declined. During the experiment, a greater quantity of Pb was uptake and mostly retained in L. formosana roots, and the translocation factor values of all Pb treatments were lower than 0.1. Most of Pb in L. formosana tissues was stored in the cell wall with HAc-, HCl-, and NaCl-extractable form. The synchrotron radiation X-ray fluorescence analysis indicated that most of Pb was detected in the epidermal cells of roots. Conclusion Our results suggested that Pb deposited in the epidermal cells of roots and integration with phosphate or oxalate might be responsible for the tolerance of L. formosana under Pb stress in short period.

  • 铅(Pb)是所有元素中仅次于砷的第二大有害重金属[1],土壤和水体中铅污染主要为人类活动所致,铅的主要来源有含铅油漆的使用、铅弹、含砷酸铅农药的应用、烧煤、汽油、炸药等[2],铅污染被认为是最严重的金属污染,是造成环境污染的主要原因[3]。铅可通过食物链进入人体,从而对人体健康造成潜在的危害[4]。因此,对铅污染土壤进行修复是一项十分迫切的环境治理课题。

    植物修复(Phytoremediation)是一种绿色、低成本的土壤污染修复技术[5],选择合适的植物是植物修复技术能否成功的一个关键因素[6]。木本植物具有生物量大、根系发达的特点[7],并且木本植物在一定程度上有能力积累重金属并将其转运到地上部分[8-11],速生木本植物地上部积累的重金属含量可能比草本超富集植物地上部多[12-13]。因此,了解具有修复潜力的速生木本植物在重金属胁迫下生长响应和重金属积累模式,将有助于评估其在田间修复中的应用前景。

    枫香(Liquidambar formosana Hance)为金缕梅科(Hamamelidaceae)枫香树亚科(Subfam. Liquidambaroideae Harms)枫香属(Liquidambar Linn)高大落叶乔木,是第三纪孑遗植物[14],在我国分布广泛,是重要的乡土树种。枫香适应性很强,属典型的“荒山先锋”树种[15],在改善生态环境等方面具有重要作用。近年来,南京林业大学相关研究组在枫香植物修复等方面开展了较多研究,主要集中在不同年龄段的枫香对重金属的吸收积累能力[16]以及不同表面活性剂与镉复合污染对枫香生长的影响等[14, 17]。本项目组在前期的矿区造林试验以及室内盆栽试验也表明,枫香在矿区有较好的耐性,并且其对重金属有一定的吸收转运能力。通常铅胁迫下,植物的代谢和生理过程会受到影响[4],同时植物也进化形成一些铅的耐性机制,如铅在植物体内的化学形态和亚细胞分布与植物的铅耐受性有关[10, 18]。但目前有关枫香对重金属的耐性机制方面缺乏深入研究。因此,本文以1年生枫香幼苗为试验材料,采用水培法,研究不同浓度铅胁迫下叶和根中铅化学提取态的变化情况,并通过同步辐射X射线荧光(Synchrotron radiation X-ray fluorescence,SRXRF)技术,研究铅以及其它元素在枫香根系的微区分布,初步探讨枫香铅耐受机制,为铅污染土壤植物修复提供参考。

1.   材料与方法
  • 枫香种子采自湖南衡山(27°201′N, 112°847′E),于2016年3月大棚播种育苗。基质为珍珠岩:泥炭=1:3,采用自动喷雾浇水,待幼苗出土后,适量喷洒营养液以供生长。选择生长一致的1年生枫香幼苗(苗高50~60 cm,地径0.4~0.5 cm),将其转移至45 cm × 35 cm × 15 cm(长×宽×高)容器内,待植物适应水培环境后,往容器中注入改良的Watson营养液[20]进行培养,连续充气,自然光照。在培养过程中通过加入HCl或NaOH溶液调节pH,pH值维持在5~6。2周后向营养液中添加0、50、100、200和400 mg·L-1 Pb(NO3)2。根据前期试验结果,营养液中最终Pb2+浓度会较设计浓度低6%~21.6%[19]。试验共计5个处理,每个处理3次重复,每个处理共27株枫香幼苗。试验过程中,白天温度25~35℃,晚间温度15~20℃,相对湿度60%~80%。试验期间,定期观察苗木根系、叶片症状并记录。培养14 d后,收获植物。

  • 植株收获后,将其分为叶片、茎和根系3部分。根系用去离子水轻轻冲洗3次,再用5 mmol·L-1 Ca(NO3)2浸泡15 min以解吸吸附在根表的铅。样品经105℃杀青30 min,75℃烘干3 d后称其生物量。耐性指数(TI)=处理组整株植物生物量(g)/对照组整株植物生物量(g)。

  • 植物叶片擦净后,取0.5 g样品,加液氮研磨,然后根据Zhou等[10]的方法测定枫香叶片叶绿素和类胡萝卜素含量。

  • 植物各组织分别粉碎成粉末,取0.2 g样品,植物中铅含量的测定参照王树凤等[20]的方法进行。转移系数(TF)=地上部分铅积累浓度/地下部分铅积累浓度。

  • 由于枫香幼苗在50、100、200 mg·L-1铅处理组中表现相似,因此,本试验选择0、100、400 mg·L-1铅处理组幼苗叶片和根系为试验材料,分析铅在其体内存在的化学形态。称取2 g新鲜样品,剪碎后依次加入不同的提取剂(80%乙醇、去离子水、1 mol·L-1 NaCl、2%HAc和0.6 mol·L-1 HCl),然后根据Zhou等[21]的方法提取枫香根系和叶片中各种化学结合形态铅离子。

  • 本试验所用枫香根系样品来源于对照组和100 mg·L-1 Pb处理组。处理后的根系利用冷冻切片机制成30 μm的切片,然后在-20℃条件下冷冻干燥3 d。根系切面中元素分布的实验在北京正负电子对撞机的4W1B同步辐射- X-射线荧光微分析实验站进行,测定时贮存环的电子能量为2. 2 GeV,束流强度为78~120 mA。同步辐射X射线微束激发植物样品能谱图的获得以及数据解谱分析参照王树凤等[20]等方法进行。

  • 试验数据采用统计软件SPSS 25.0进行方差分析和差异显著性分析(最小差异显著法)。图中数据为平均值±标准误。

2.   结果与分析
  • 枫香幼苗在试验初期能正常生长。铅胁迫7 d后,100、200、400 mg·L -1处理组枫香幼苗叶片叶尖开始出现黄化现象。此后,黄化现象显著增加,所有铅处理植株均表现出一定的毒害效应,而对照组幼苗没有出现毒害症状。各铅处理组枫香植株不同器官生物量与对照组相比无显著差异(400 mg·L -1处理组叶片生物量除外,图 1)。各铅处理组整株植株生物量耐性指数分别为1.02、0.95、0.94和0.90,各处理组之间统计上无显著差异。

    Figure 1.  Biomass of L. formosana under Pb stress

  • 图 2表明:水培条件下,试验结束后,枫香幼苗的叶绿素a含量在各铅处理组均较对照组有显著下降(P < 0.05),叶绿素b含量在50 mg·L-1铅处理组较对照组有显著下降,其他铅处理组与对照组差异不显著。叶绿素a/叶绿素b比值为1.581.94,其中,400 mg·L-1铅处理组的比值低于其它处理组。各铅处理组类胡萝素含量同样表现为较对照组显著下降。

    Figure 2.  The photosynthetic pigment concentrations in the leaves of L. formosana under Pb stress

  • 枫香幼苗不同器官中的铅浓度随着培养液中铅浓度的增加而增加(图 3)。除对照组外,枫香幼苗不同器官中的铅浓度大小顺序为根系>茎>叶片。枫香幼苗各器官在400 mg·L -1铅处理组的铅浓度最高,其叶片、茎和根系的铅浓度分别为96.3、247.9和3 030.3 mg·kg -1(图 3)。枫香幼苗对铅的转移能力较低,其转移系数均小于0.10,其中,在400 mg·L -1铅处理组的转移系数达到最高,为0.07。

    Figure 3.  Average Pb concentrations in dry plant tissues of L. formosana seedlings exposed to Pb

  • 枫香幼苗叶片中各结合形态的铅离子丰度见图 4,在中低浓度铅胁迫下(100 mg·L -1),枫香幼苗叶片中醋酸提取态铅占绝对优势,占总量的47.6%,其次是盐酸提取态铅;在高浓度铅胁迫下(400 mg·L -1),枫香幼苗叶片中以盐酸提取态铅占绝对优势,占总量的54.7%,其次是醋酸提取态铅。在根系中,铅同样以醋酸提取态32.91%~34.45%和盐酸提取态为主31.97%~35.82%。与对照组相比,活性较低的残渣态铅比例下降,同时活性较高的去离子水提取态铅比例分别由40.7%下降至4.79%~4.80%(叶片),46.4%下降至5.94%~7.89%(根系);而活性相对较高的氯化钠提取态铅比例则有增加趋势。

    Figure 4.  The change of lead abundance level of chemical form in dry plant tissues of L. formosana seedlings exposed to Pb

  • 枫香幼苗根系组织中铅、钙、铁、锌和钾等元素特征峰及相对含量均可被SRXRF检测出。因此,利用该技术,通过定性与半定量分析可比较直观了解铅及其它元素在枫香幼苗根系中的分布差异。由图 56可以看出,铅处理组和对照组枫香幼苗根系铅的分布基本呈现相同规律,即铅含量在表皮最高,从皮层最外层向内呈递减趋势。根横切面上钙、铁、锌和钾元素的分布存在一定的差异,但这些元素的微区分布特征与铅较为相似,均表现为在根表皮含量较高,从外皮层到内皮层依次降低。

    Figure 5.  Optical microscope image and the 2D-images of Pb, Fe, Zn, Ca and K distributions in the root cross-section of control treatment

    Figure 6.  Optical microscope image and the 2D-images of Pb, Fe, Zn, Ca and K distributions in the root cross-section of Pb treatment

3.   讨论
  • 铅是土壤中最广泛的重金属污染物之一,即使在低浓度环境中,铅对植物和其它生物也具有极高的毒性[22]。本研究结果表明,枫香幼苗能在不同铅浓度污染环境中生长,其中,50 mg·L -1铅处理组枫香植株根系较对照组有更多的不定根,并且生物量较对照组高,这与许多研究表明多种植物在铅处理浓度不超过200 μmol·L -1、胁迫不超过14 d时,生长不会受到抑制的研究结果相似。这些植物包括紫花香薷(Elsholtzia argyi Levl.)[23]、东南景天(Sedum alfredii Hance)[24]和土人参(Talinum triangulare (Jacq.) Willd.)[25]。研究表明,在高浓度重金属胁迫下植物会因生长混乱导致生物量下降[26-27]。本研究中,枫香幼苗在高浓度铅胁迫下同样也出现生物量显著下降的现象。尽管如此,其耐性指数均在0.90以上,这表明其对高浓度铅具有一定程度的耐性,也说明枫香具有很强的适应环境剧烈变化的能力。各铅处理组枫香幼苗叶片叶绿素含量无显著的剂量效应,这可能是因为叶片中活性较高的乙醇提取态和去离子水提取态铅浓度在各处理之间差异不大,从而导致不同浓度铅处理对枫香幼苗叶绿素合成的影响相似。对枫香植株体内铅含量的分析可知,根系是其赋存铅的主要场所,将铅主要储存在根系,并限制铅转运至地上部,从而减轻铅对光合作用及其它代谢活动的影响可能是其在铅胁迫下的一种保护机制。这种机制可能包括二个方面:(1)根系细胞内皮层的凯氏带阻止了铅的转移;(2)根系系统的内皮层细胞的横向滞留阻止了铅向地上部的转运[28]。对植物重金属耐性的评价涉及到许多方面,特别是植物在田间试验的表现。尽管本研究中铅处理组耐性指数均在0.90以上,但枫香幼苗叶片叶绿素含量较对照组显著下降。本试验结果仅仅是对枫香幼苗铅胁迫14 d后的耐性进行初步评价,还需中长期的田间试验对枫香铅耐性作进一步评价。

    植物组织中重金属的化学形态会影响植物生长和重要的生理生化过程[10]。通常活性强的乙醇提取态和去离子水提取态铅对植物有较大的毒害效应[29]。本研究中,枫香幼苗体内铅主要以醋酸提取态和盐酸提取态为主,其次是氯化钠提取态。这一现象也在小麦(Triticum aestivum L.)[29]、茶树(Camellia sinensis (L.) O. Ktze.)[30]等植物中发现,这表明铅与磷酸盐配体、草酸盐配体、蛋白以及果胶配体结合可减轻铅对枫香的毒害。本研究也发现,低浓度铅胁迫下枫香幼苗叶片中盐酸提取态小于醋酸提取态,而高浓度铅胁迫下则表现出相反的趋势,说明叶片对不同浓度铅的解毒机理有所不同。高浓度铅胁迫下,枫香幼苗叶片将活性较强的提取态转换成活性更低的盐酸提取态能力更强。试验结果也表明,活性相对较高的氯化钠提取态铅有显著增加,特别是在根系中,这与红外傅立叶光谱图中果胶质中的特征峰发生迁移的结果相一致(数据未发表),这也解释了为何仍有少量的铅转移至地上部。

    SRXRF分析表明,枫香根组织中的表皮层区域铅浓度较高,而皮层与维管道束区域铅含量较低,这与铅胁迫下茶树根系铅的微区分布相似[30],这可能是铅进入皮层后,由于凯氏带的拦截作用,使维管束区域的含量较低,从而减少铅向地上部的输送[28],这与铅主要赋存在枫香幼苗根系的结果相一致。铅胁迫后,枫香幼苗根系中各元素含量较对照组有显著变化,其中,铁元素含量显著增加,较对照组增加507%;同时SRXRF分析发现,在枫香根表皮层的铁含量相对明显高于根部其它区域,这表明在枫香根部表面可能会形成铁膜,试验后期作者也在少数枫香根系中发现这一现象。根系铁膜的形成可以抑制植物对重金属的吸收,从而缓解重金属对植物的毒害[30-31];同时研究也表明,钾和钙元素的含量则分别较对照组下降45%和68%。元素之间含量的比例也发生显著变化,如对照组中钾含量与钙含量比值为1.87:1,处理组2种元素含量比值则为3.2:1,这与镉会扰乱水稻(Oryza sativa L.)根系对大量元素离子吸收的现象相似[32],表明铅的加入也干扰了枫香幼苗对其它离子的吸收,打破了离子间的相对平衡,这可能是枫香幼苗在铅胁迫下出现毒害症状的主要原因。

4.   结论
  • 短期水培试验表明,枫香幼苗在铅胁迫下,叶片会出现黄化现象,但其耐性指数均在0.90以上,表明其对铅有一定的耐授性。枫香幼苗根系吸收的铅大多积累于根部,可利用其对土壤中的铅进行植物固定,以降低铅的环境风险。铅主要赋存在枫香幼苗根系表皮层区域,并且铅在枫香植株体内主要以醋酸提取态和盐酸提取态为主,其次是氯化钠提取态。铅的这种区隔化分布以及以活性较低形态存在可能与铅在枫香组织中的解毒方式有关。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return